
IITP DABT Admin Backend 설계서

1 / 112

IITP DABT Admin

Backend 설계서

문서 버전: 1.0.0
작성일: 2025-11-12

(주)스위트케이

IITP DABT Admin Backend 설계서

2 / 112

문서 History

버전 일자 작성자 변경 내용 비고

1.0.0 2025-11-12 (주)스위트케이 최초 작성

IITP DABT Admin Backend 설계서

3 / 112

목차

1. Backend 개요
1.1 Backend 역할 및 범위
1.2 Backend 아키텍처 개요
1.3 기술 스택
1.4 참고 문서

2. Common 패키지 상세
2.1 Common 패키지 개요
2.2 주요 기능
2.3 에러 코드 체계

3. Backend 상세 설계
3.1 소프트웨어 아키텍처
3.2 디렉토리 구조

4. 인증 및 권한 체크
4.1 JWT 토큰 구조
4.2 인증 미들웨어
4.3 권한 체크 (목적별 정리)
4.4 권한 체크 Flow

5. 주요 기능 상세
5.1 인증 및 회원가입
5.2 사용자 관리
5.3 운영자 관리 (S-ADMIN 전용)
5.4 콘텐츠 관리
5.5 공통 코드 관리 (S-ADMIN 전용)
5.6 OpenAPI 키 관리

6. 데이터베이스 설계
6.1 Sequelize 모델
6.2 주요 테이블 상세

7. 환경 설정 및 배포
7.1 환경 변수
7.2 빌드 및 배포 (간략)
7.3 로깅 (Winston 3-File Strategy)

8. 보안 및 암호화
8.1 환경 변수 암호화 (AES-256-CBC)
8.2 비밀번호 해싱 (bcrypt)

9. 부록

IITP DABT Admin Backend 설계서

4 / 112

Appendix A: API 응답 구조
Appendix B: 트러블슈팅

IITP DABT Admin Backend 설계서

5 / 112

1. Backend 개요

1.1 Backend 역할 및 범위
IITP DABT Admin의 Backend는 시스템의 핵심 비즈니스 로직과 데이터 처리를 담당하는 API 서버입니다.

1.1.1 주요 역할
1. REST API 서버 제공

클라이언트(Frontend)와 데이터베이스 사이의 중재자
RESTful 원칙을 따르는 API 엔드포인트 제공
JSON 형식의 요청/응답 처리

2. 비즈니스 로직 처리

사용자 인증 및 권한 검증
데이터 생성, 수정, 삭제 규칙 적용
복잡한 비즈니스 로직 구현

3. 데이터베이스 연동

PostgreSQL 데이터베이스와 통신
Sequelize ORM을 통한 데이터 접근
트랜잭션 관리

4. 인증/인가 처리

JWT 기반 토큰 발급 및 검증
역할 기반 접근 제어 (RBAC)
Sliding Session을 통한 토큰 자동 갱신

5. 로깅 및 모니터링

API 접근 로그 자동 기록
에러 추적 및 디버깅
감사 로그 (Audit Log) 관리

IITP DABT Admin Backend 설계서

6 / 112

1.2 Backend 아키텍처 개요

1.2.1 전체 아키텍처 구성
본 시스템은 Express App → Router → Middleware → Controller → Service → Repository 구조를
따릅니다.

IITP DABT Admin Backend 설계서

7 / 112

┌───┐

│ Client (Frontend) │

└──────────────┬──────────────────────────┘

 │ HTTP Request (JSON)

 ↓

┌──┐

│ Express Application (index.ts) │

│ - CORS 설정 │

│ - Body Parser (express.json()) │

│ - 전역 미들웨어 등록 │

└──────────────┬───────────────────────────┘

 ↓

┌──┐

│ Express Router (라우터 매칭) │

│ - /api/auth → authRouter │

│ - /api/admin → adminRouter │

│ - /api/user → userRouter │

│ - /api/common → commonRouter │

└──────────────┬───────────────────────────┘

 ↓

┌──┐

│ Middleware Layer (미들웨어 체인) │

│ - accessLogMiddleware (요청/응답 로깅) │

│ - trimMiddleware (데이터 정규화) │

│ - authMiddleware (인증 체크) │

│ - adminAuthMiddleware (관리자 권한) │

└──────────────┬───────────────────────────┘

 ↓

┌──┐

│ Controller Layer │

│ - API 엔드포인트 정의 │

│ - 요청 파싱 및 검증 │

│ - Service 호출 │

│ - 응답 반환 (성공/에러) │

└──────────────┬───────────────────────────┘

 ↓

┌──┐

│ Service Layer │

│ - 비즈니스 로직 처리 │

│ - 권한 체크 │

│ - 트랜잭션 관리 │

│ - 에러 처리 │

└──────────────┬───────────────────────────┘

IITP DABT Admin Backend 설계서

8 / 112

 ↓

┌──┐

│ Repository Layer │

│ - 데이터베이스 접근 │

│ - ORM 쿼리 실행 │

│ - 데이터 변환 (Mapper) │

└──────────────┬───────────────────────────┘

 ↓

┌──┐

│ Database (PostgreSQL) │

└──┘

1.3 기술 스택

1.3.1 Core Technologies

분류 기술 버전 용도

Runtime Node.js 22.x JavaScript 실행 환경

Framework Express.js 4.x 웹 애플리케이션 프레임워크

Language TypeScript 5.x 타입 안전성

1.3.2 Database

분류 기술 버전 용도

DBMS PostgreSQL 12.x 이상 관계형 데이터베이스

ORM Sequelize 6.x 객체-관계 매핑

1.2.3 Security & Authentication

분류 기술 용도

Authentication jsonwebtoken JWT 토큰 생성/검증

IITP DABT Admin Backend 설계서

9 / 112

분류 기술 용도

Password bcrypt 비밀번호 해싱 (salt rounds: 10)

Encryption crypto (AES-256-CBC) 환경 변수 암호화

1.3.4 Logging & Monitoring

분류 기술 용도

Logger Winston 로깅 시스템 (3-File Strategy)

Log Rotation winston-daily-rotate-file 일별 로그 로테이션

1.3.5 Development Tools

분류 기술 용도

Environment dotenv 환경 변수 관리

Build tsc (TypeScript Compiler) TypeScript → JavaScript 변환

Process Manager PM2 프로세스 관리 및 무중단 재시작

1.3.6 Common Package

분류 패키지 용도

Shared @iitp-dabt/common BE/FE 공통 유틸리티 및 타입

1.4 참고 문서
IITP DABT Admin 프로젝트 아키텍처 가이드 : 프로젝트 전체 아키텍처 설명
IITP DABT Admin Frontend 상세 설계서 : Frontend 개발 참조
API 규격서 : API 스펙 상세
서버 배포 및 설치 가이드 : 서버 배포/설치/실행 가이드

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98.pdf
file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_FE%EC%83%81%EC%84%B8%EC%84%A4%EA%B3%84%EC%84%9C.pdf
file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_API_%EA%B7%9C%EA%B2%A9%EC%84%9C.pdf
file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%EB%B0%B0%ED%8F%AC%EC%84%A4%EC%B9%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf

IITP DABT Admin Backend 설계서

10 / 112

2. Common 패키지 상세

2.1 Common 패키지 개요
전체 개요: 프로젝트 아키텍처 가이드 2.3절 참조

패키지명: @iitp-dabt/common

기능: Backend와 Frontend에서 공통으로 사용하는 유틸리티 및 타입 정의

특징:

순수 TypeScript로 작성
외부 의존성 없음 (Node.js, React 독립적)
BE/FE에서 동일한 검증 로직 및 타입 사용

중요성:

BE/FE 간 타입 불일치 방지
검증 로직 중복 제거
API 요청/응답 타입 일치 보장
유지보수성 향상

2.2 주요 기능

2.2.1 검증
Backend에서 요청 검증 기능입니다.

이메일 검증:

이메일 형식 검증 (RFC 5322 표준)
Controller에서 로그인, 회원가입 시 사용

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf#23-common-%ED%8C%A8%ED%82%A4%EC%A7%80

IITP DABT Admin Backend 설계서

11 / 112

비밀번호 검증:

8자 이상, 영문/숫자/특수문자 필수
강도 측정 (weak, medium, strong) : FE에서 비빌번호 입력시에 검증

이름/소속 검증:

isValidName(name: string): boolean

isValidAffiliation(affiliation: string): boolean

길이 및 형식 검증

활용 예시 (Backend Controller):

import { isValidEmail, isValidPassword } from '@iitp-dabt/common';

// 회원가입 요청 검증

if (!isValidEmail(email)) {

 return sendError(res, ErrorCode.INVALID_EMAIL);

}

if (!isValidPassword(password)) {

 return sendError(res, ErrorCode.INVALID_PASSWORD);

}

2.2.2 타입 정의 (types/)
API 요청/응답 타입:

Backend Controller의 요청/응답 타입
Frontend API 호출 시 동일한 타입 사용
타입 안전성 보장

에러 코드:

시스템 전체 에러 코드 정의
Backend에서 에러 응답 시 사용
Frontend에서 에러 처리 시 동일 코드 체크

공통 코드 상수:

IITP DABT Admin Backend 설계서

12 / 112

// 관리자 역할 코드

CODE_SYS_ADMIN_ROLES = {

 SUPER_ADMIN: 'S-ADMIN',

 ADMIN: 'ADMIN',

 EDITOR: 'EDITOR',

 VIEWER: 'VIEWER'

}

// 작업 유형 코드

CODE_SYS_WORK_TYPES = {

 BATCH: 'SYS-BATCH',

 MANUAL: 'SYS-MANUAL',

 USER: 'BY-USER'

}

활용: Backend에서 역할 체크, Frontend에서 UI 제어 시 동일 상수 사용

2.2.3 API 응답 구조
Backend의 모든 API는 통일된 응답 구조를 사용합니다.

interface ApiResponse<T> {

 result: 'ok' | 'error';

 data?: T;

 message?: string;

 errorCode?: number;

}

성공 응답 예시:

{

 "result": "ok",

 "data": {

 "userId": 123,

 "name": "홍길동"

 }

}

에러 응답 예시:

IITP DABT Admin Backend 설계서

13 / 112

{

 "result": "error",

 "errorCode": 14000,

 "message": "이메일 또는 비밀번호가 올바르지 않습니다."

}

2.3 에러 코드 체계
Backend의 모든 에러는 Common 패키지에 정의된 코드를 사용합니다.

2.3.1 에러 코드 범위

범위 분류 예시 코드

11xxx 기본 에러 UNKNOWN_ERROR, VALIDATION_ERROR

12xxx 요청 관련 INVALID_REQUEST, EMAIL_ALREADY_EXISTS

14xxx 인증 관련 AUTH_INVALID_CREDENTIALS, TOKEN_EXPIRED

15xxx 사용자 관련 USER_NOT_FOUND, USER_INACTIVE

16xxx 관리자 관련 ADMIN_NOT_FOUND, ADMIN_ACCESS_DENIED

17xxx FAQ 관련 FAQ_NOT_FOUND, FAQ_CREATE_FAILED

18xxx QNA 관련 QNA_NOT_FOUND, QNA_ALREADY_REPLIED

19xxx 공지사항 관련 NOTICE_NOT_FOUND

20xxx OpenAPI 관련 OPENAPI_KEY_INVALID

21xxx 공통 코드 관련 COMMON_CODE_NOT_FOUND

22xxx 시스템 관련 SYS_INTERNAL_SERVER_ERROR

2.3.2 주요 에러 코드
인증 관련 (14xxx):

IITP DABT Admin Backend 설계서

14 / 112

 14000 : AUTH_INVALID_CREDENTIALS - 이메일 또는 비밀번호 불일치
 14001 : TOKEN_REQUIRED - 토큰 누락
 14002 : TOKEN_EXPIRED - 토큰 만료
 14003 : TOKEN_INVALID - 토큰 무효
 14004 : UNAUTHORIZED - 인증 필요

권한 관련:

 16000 : FORBIDDEN - 권한 없음
 16001 : ADMIN_ACCESS_DENIED - 관리자 권한 필요

사용자 관련 (15xxx):

 15000 : USER_NOT_FOUND - 사용자 없음
 15001 : USER_INACTIVE - 비활성 계정
 15002 : USER_DELETED - 삭제된 계정
 12001 : EMAIL_ALREADY_EXISTS - 이메일 중복

IITP DABT Admin Backend 설계서

15 / 112

3. Backend 상세 설계

3.1 소프트웨어 아키텍처

3.1.1 전체 처리 흐름 상세
시나리오: 사용자가 POST /api/auth/user/login 요청을 보내는 경우

IITP DABT Admin Backend 설계서

16 / 112

┌──┐

│ Client Request │

│ POST /api/auth/user/login │

│ { loginId, password } │

└─────────────┬──────────────────────────────┘

 ↓

┌───┐

│ Express Application (index.ts) │

│ -------------------------------- │

│ - CORS 미들웨어 실행 │

│ - Body Parser (express.json()) │

│ - req.body 파싱 완료 │

└─────────────┬───────────────────────────────┘

 ↓

┌───┐

│ accessLogMiddleware (전역) │

│ -------------------------------- │

│ - requestId 생성 (UUID) │

│ - 요청 시작 시간 기록 │

│ - req.requestId 저장 │

└─────────────┬───────────────────────────────┘

 ↓

┌───┐

│ Express Router 매칭 │

│ -------------------------------- │

│ - URL: /api/auth/user/login │

│ - Router: authRouter │

│ - Route: POST /api/auth/user/login │

│ - Controller: userLogin │

└─────────────┬───────────────────────────────┘

 ↓

┌───┐

│ 라우터별 미들웨어 체인 (routerMiddleware) │

│ -------------------------------- │

│ 1. accessLogMiddleware (이미 실행됨, 스킵) │

│ 2. trimMiddleware │

│ - req.body 문자열 앞뒤 공백 제거 │

│ - XSS 공격 방지 │

│ 3. authMiddleware (인증 불필요, 스킵) │

│ - dataOnly 체인 사용 │

└─────────────┬───────────────────────────────┘

 ↓

┌───┐

IITP DABT Admin Backend 설계서

17 / 112

│ Controller (userAuthController.ts) │

│ -------------------------------- │

│ - logApiCall() 호출 (API 매핑 로깅) │

│ - 요청 파싱: req.body.loginId, password │

│ - 검증: Common 패키지 validation │

│ - IP 주소 추출: extractClientIP() │

│ - User-Agent 정규화: normalizeUserAgent() │

│ - Service 호출: loginUser() │

│ - 응답 반환: sendSuccess() / sendError() │

└─────────────┬───────────────────────────────┘

 ↓

┌───┐

│ Service (userAuthService.ts) │

│ -------------------------------- │

│ - 비즈니스 로직 구현 │

│ - Repository 호출: findByLoginId() │

│ - 비밀번호 검증: bcrypt.compare() │

│ - JWT 생성: generateAccessToken() │

│ - Refresh Token 생성 │

│ - 로그 기록: logApiCall() │

└─────────────┬───────────────────────────────┘

 ↓

┌───┐

│ Repository (openApiUserRepository.ts) │

│ -------------------------------- │

│ - Sequelize Model: OpenApiUser │

│ - DB 쿼리 실행: │

│ User.findOne({ │

│ where: { │

│ loginId: ?, │

│ delYn: 'N' │

│ } │

│ }) │

│ - 데이터 반환: User 객체 │

└─────────────┬───────────────────────────────┘

 ↓

┌───┐

│ Database (PostgreSQL) │

│ -------------------------------- │

│ SELECT * FROM open_api_user │

│ WHERE login_id = ? AND del_yn = 'N' │

│ LIMIT 1 │

└─────────────┬───────────────────────────────┘

IITP DABT Admin Backend 설계서

18 / 112

 ↓

┌───┐

│ Repository → Service → Controller │

│ -------------------------------- │

│ - 데이터 변환 (Mapper) │

│ - 비즈니스 로직 처리 │

│ - 응답 데이터 구성 │

└─────────────┬───────────────────────────────┘

 ↓

┌───┐

│ accessLogMiddleware (응답 로깅) │

│ -------------------------------- │

│ - res.send() 가로채기 │

│ - 응답 시간 계산: endTime - startTime │

│ - 로그 기록: │

│ accessLogger.info(│

│ "POST - /api/auth/user/login, │

│ 200, true, {requestId}, 45ms" │

│) │

│ - access-YYYY-MM-DD.log 파일에 저장 │

└─────────────┬───────────────────────────────┘

 ↓

┌───┐

│ HTTP Response │

│ -------------------------------- │

│ Status: 200 OK │

│ Body: { │

│ success: true, │

│ data: { │

│ token: "...", │

│ refreshToken: "...", │

│ user: { ... } │

│ } │

│ } │

└───┘

3.1.2 미들웨어 체계
Backend의 모든 요청은 다음 미들웨어들을 거칩니다.

미들웨어 실행 순서:

IITP DABT Admin Backend 설계서

19 / 112

1. CORS 미들웨어 (app.use(cors(...)))

2. Body Parser (express.json())

3. accessLogMiddleware (API 접근 로그 자동 기록)

4. trimMiddleware (요청 데이터 공백 제거)

5. authMiddleware / adminAuthMiddleware (인증/권한)

6. Controller 실행

각 미들웨어 설명:

1. accessLogMiddleware

모든 API 요청/응답 자동 기록
 access-YYYY-MM-DD.log 파일에 저장
Method, URL, Status, Duration 기록

2. trimMiddleware

요청 데이터의 문자열 앞뒤 공백 자동 제거
XSS 공격 방지
데이터 정규화

3. authMiddleware

JWT 토큰 검증
 req.user 에 사용자 정보 저장
Sliding Session 처리

4. adminAuthMiddleware

 authMiddleware 실행 후 추가 체크
 userType === 'A' 확인
관리자 전용 API에 적용

IITP DABT Admin Backend 설계서

20 / 112

3.2 디렉토리 구조

be/

├── src/

│ ├── controllers/ # 컨트롤러 (API 엔드포인트)

│ │ ├── admin/ # 관리자 컨트롤러

│ │ │ ├── adminAccountController.ts # 운영자 계정 관리

│ │ │ ├── adminAuthController.ts # 관리자 인증

│ │ │ ├── adminController.ts # 관리자 프로필

│ │ │ ├── adminFaqController.ts # FAQ 관리

│ │ │ ├── adminNoticeController.ts # 공지사항 관리

│ │ │ ├── adminOpenApiController.ts # OpenAPI 키 관리

│ │ │ ├── adminQnaController.ts # Q&A 관리

│ │ │ └── userAccountController.ts # 사용자 계정 관리

│ │ ├── common/ # 공통 컨트롤러

│ │ │ ├── commController.ts # 헬스체크, 버전

│ │ │ └── commonCodeController.ts # 공통 코드

│ │ └── user/ # 사용자 컨트롤러

│ │ ├── userAuthController.ts # 사용자 인증

│ │ ├── userController.ts # 사용자 프로필

│ │ ├── userFaqController.ts # FAQ 조회

│ │ ├── userNoticeController.ts # 공지사항 조회

│ │ ├── userOpenApiController.ts # OpenAPI 키

│ │ └── userQnaController.ts # Q&A

│ │

│ ├── services/ # 비즈니스 로직

│ │ ├── admin/

│ │ │ ├── adminAccountService.ts

│ │ │ ├── adminAuthService.ts

│ │ │ ├── adminFaqService.ts

│ │ │ ├── adminNoticeService.ts

│ │ │ ├── adminOpenApiService.ts

│ │ │ ├── adminQnaService.ts

│ │ │ ├── adminService.ts

│ │ │ └── userAccountService.ts

│ │ ├── common/

│ │ │ └── commonCodeService.ts

│ │ └── user/

│ │ ├── userAuthService.ts

│ │ ├── userFaqService.ts

│ │ ├── userNoticeService.ts

│ │ ├── userOpenApiService.ts

IITP DABT Admin Backend 설계서

21 / 112

│ │ ├── userQnaService.ts

│ │ └── userService.ts

│ │

│ ├── repositories/ # 데이터 접근 계층

│ │ ├── openApiAuthKeyRepository.ts

│ │ ├── openApiUserRepository.ts

│ │ ├── sysAdmAccountRepository.ts

│ │ ├── sysCommonCodeRepository.ts

│ │ ├── sysFaqRepository.ts

│ │ ├── sysLogChangeHisRepository.ts

│ │ ├── sysLogUserAccessRepository.ts

│ │ ├── sysNoticeRepository.ts

│ │ └── sysQnaRepository.ts

│ │

│ ├── models/ # Sequelize 모델 정의

│ │ ├── openApiAuthKey.ts

│ │ ├── openApiUser.ts

│ │ ├── sysAdmAccount.ts

│ │ ├── sysCommonCode.ts

│ │ ├── sysFaq.ts

│ │ ├── sysLogChangeHis.ts

│ │ ├── sysLogUserAccess.ts

│ │ ├── sysNotice.ts

│ │ ├── sysQna.ts

│ │ └── index.ts # 모델 초기화

│ │

│ ├── routes/ # 라우터 (API 경로 정의)

│ │ ├── adminRouter.ts # /api/admin/*

│ │ ├── authRouter.ts # /api/auth/*

│ │ ├── commonCodeRoutes.ts # /api/common-code/*

│ │ ├── commonRouter.ts # /api/common/*

│ │ └── userRouter.ts # /api/user/*

│ │

│ ├── middleware/ # 미들웨어

│ │ ├── accessLogMiddleware.ts # API 접근 로그

│ │ ├── authMiddleware.ts # JWT 인증

│ │ ├── trimMiddleware.ts # 데이터 트림

│ │ └── index.ts # 미들웨어 통합

│ │

│ ├── mappers/ # 데이터 변환 (DB ↔ API)

│ │ ├── commonCodeMapper.ts

│ │ ├── faqMapper.ts

│ │ ├── noticeMapper.ts

IITP DABT Admin Backend 설계서

22 / 112

│ │ ├── openApiMapper.ts

│ │ └── qnaMapper.ts

│ │

│ ├── utils/ # 유틸리티 함수

│ │ ├── apiLogger.ts # API 로깅 헬퍼

│ │ ├── auth.ts # 권한 체크 함수

│ │ ├── authKeyGenerator.ts # API 키 생성

│ │ ├── commonUtils.ts # 공통 유틸

│ │ ├── customErrors.ts # 커스텀 에러

│ │ ├── decrypt.ts # AES-256 복호화

│ │ ├── errorHandler.ts # 에러 핸들러

│ │ ├── jwt.ts # JWT 생성/검증

│ │ ├── logger.ts # Winston 로거

│ │ ├── queryParsers.ts # 쿼리 파서

│ │ ├── response.ts # 응답 헬퍼

│ │ ├── timeUtils.ts # 시간 유틸

│ │ └── trimUtils.ts # 트림 유틸

│ │

│ ├── types/ # TypeScript 타입 정의

│ │ └── express.d.ts # Express 확장 타입

│ │

│ └── index.ts # 애플리케이션 진입점

│

├── scripts/ # 유틸리티 스크립트

│ ├── build-info.js # 빌드 정보

│ ├── dev-watch.js # 개발 모드 감시

│ ├── encrypt-env.js # 환경 변수 암호화

│ └── test-password-hash.js # 비밀번호 해싱 테스트

│

├── logs/ # 로그 파일 (자동 생성)

│ ├── app-YYYY-MM-DD.log

│ ├── access-YYYY-MM-DD.log

│ └── error-YYYY-MM-DD.log

│

├── dist/ # 빌드 결과물 (TypeScript → JavaScript)

├── node_modules/ # 의존성

├── .env # 환경 변수 (Git 제외)

├── .env.example # 환경 변수 예시

├── package.json

├── tsconfig.json

└── README.md

IITP DABT Admin Backend 설계서

23 / 112

3.2.1 디렉토리별 역할
src/controllers/:

API 엔드포인트 정의
요청 파싱 및 검증
Service 호출
응답 반환

src/services/:

비즈니스 로직 구현
권한 체크
Repository 호출
에러 처리

src/repositories/:

데이터베이스 접근
Sequelize 쿼리 실행
데이터 반환

src/models/:

Sequelize 모델 정의
테이블 스키마
관계 설정 (associate)

src/middleware/:

요청 전처리
인증/권한 체크
로깅

src/utils/:

공통 유틸리티 함수
헬퍼 함수

IITP DABT Admin Backend 설계서

24 / 112

4. 인증 및 권한 체크
권한 체계 전체 개요: 프로젝트 아키텍처 가이드 3장 참조

4.1 JWT 토큰 구조

4.1.1 Access Token Payload

interface JwtPayload {

 userId: number; // 사용자 ID (user_id or adm_id)

 userType: 'U' | 'A'; // 사용자 타입 (U: User, A: Admin)

 role?: string; // Admin인 경우 역할 코드 (S-ADMIN, ADMIN, EDITOR, VIEWER)

 iat: number; // Issued At (발행 시각)

 exp: number; // Expiration (만료 시각)

}

4.1.2 토큰 생성 예시
사용자 로그인:

const accessToken = jwt.sign(

 {

 userId: user.userId,

 userType: 'U'

 },

 JWT_SECRET,

 { expiresIn: '15m' }

);

관리자 로그인:

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf#3-%EA%B6%8C%ED%95%9C-%EC%B2%B4%EA%B3%84-%EB%B0%8F-%EC%A0%91%EA%B7%BC-%EC%A0%9C%EC%96%B4-

IITP DABT Admin Backend 설계서

25 / 112

const accessToken = jwt.sign(

 {

 userId: admin.admId,

 userType: 'A',

 role: admin.roles // 'S-ADMIN', 'ADMIN', 'EDITOR', 'VIEWER'

 },

 JWT_SECRET,

 { expiresIn: '15m' }

);

4.1.3 Refresh Token
기능: Access Token 재발급용

만료 시간: 7일

저장 위치: Frontend LocalStorage

Rolling Refresh: 토큰 재발급 시 Refresh Token도 함께 갱신

4.2 인증 미들웨어

4.2.1 authMiddleware
파일: src/middleware/authMiddleware.ts

기능: JWT 토큰 검증 및 사용자 정보 추출

동작 순서:

IITP DABT Admin Backend 설계서

26 / 112

1. Authorization 헤더에서 Bearer 토큰 추출

2. JWT_SECRET으로 토큰 검증

3. Payload에서 사용자 정보 추출

4. req.user에 정보 저장

 {

 userId: number,

 userType: 'U' | 'A',

 actorTag: 'U:123' | 'A:456',

 admRole?: string

 }

5. Sliding Session 처리

 - 토큰 만료까지 2분 미만 남으면

 - 새 Access Token 생성

 - 응답 헤더에 추가 (X-New-Access-Token)

6. next() 호출

에러 처리:

토큰 없음 → 401 (TOKEN_REQUIRED)
토큰 만료 → 401 (TOKEN_EXPIRED)
토큰 무효 → 401 (TOKEN_INVALID)

적용 대상:

 /api/user/* - 사용자 전용 API
 /api/admin/* - 관리자 API (adminAuthMiddleware와 함께)

4.2.2 adminAuthMiddleware
파일: src/middleware/authMiddleware.ts

기능: 관리자 권한 확인

동작 순서:

1. authMiddleware 실행 (먼저)

2. req.user.userType === 'A' 확인

3. Admin 아니면 → 403 Forbidden

4. Admin이면 → next()

IITP DABT Admin Backend 설계서

27 / 112

적용 대상:

 /api/admin/* 모든 관리자 API

특징:

userType만 체크 (역할은 Controller에서 체크)
모든 Admin (S-ADMIN, ADMIN, EDITOR, VIEWER) 통과

4.3 권한 체크 (목적별 정리)
상세 권한 매트릭스: 프로젝트 아키텍처 가이드 Appendix C 참조

4.3.1 운영자 계정 관리 (S-ADMIN 전용)
기능: 시스템 관리자만 다른 관리자 계정을 관리

체크 함수: isSAdmin(adminRole)

구현:

export function isSAdmin(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN;

}

체크 이유:

1. 권한 상승 공격 방지: 일반 Admin이 본인을 S-ADMIN으로 승격하는 것 방지
2. 시스템 보안 핵심: 운영자 계정 관리는 최고 권한 필요
3. 감사 추적: 누가 어떤 역할을 부여했는지 명확히 기록

적용 API:

 POST /api/admin/admin-accounts - 운영자 생성
 PUT /api/admin/admin-accounts/:id/role - 역할 변경
 DELETE /api/admin/admin-accounts/:id - 운영자 삭제

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf#appendix-c-%EA%B6%8C%ED%95%9C-%EC%B2%B4%ED%81%AC-%ED%95%A8%EC%88%98

IITP DABT Admin Backend 설계서

28 / 112

체크 실패 시: ErrorCode.FORBIDDEN (403)

사용 예시:

export const createAdminAccount = async (req: Request, res: Response) => {

 const adminRole = getAdminRole(req);

 // 목적: 시스템 관리자만 다른 관리자 생성 가능

 if (!isSAdmin(adminRole)) {

 appLogger.warn(`[createAdminAccount] 권한 부족: role=${adminRole}`);

 return sendError(res, ErrorCode.FORBIDDEN, 'S-ADMIN 권한이 필요합니다.');

 }

 // 비즈니스 로직...

};

4.3.2 공통 코드 관리 (S-ADMIN 전용)
기능: 시스템 코드는 최고 관리자만 변경 가능

체크 함수: checkSuperRole(req) 또는 isSAdmin(adminRole)

구현:

export function checkSuperRole(req: Request): { adminId: number, isSuper: boolean } | null {

 const adminId = req.user?.userId;

 const adminRole = req.user?.admRole;

 if (!adminId) return null;

 return {

 adminId,

 isSuper: adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN

 };

}

적용 API:

 POST /api/common-code/groups - 코드 그룹 생성
 POST /api/common-code/codes/:grpId - 코드 생성

IITP DABT Admin Backend 설계서

29 / 112

 PUT /api/common-code/codes/:grpId/:codeId - 코드 수정
 DELETE /api/common-code/codes/:grpId/:codeId - 코드 삭제

체크 실패 시: ErrorCode.FORBIDDEN (403)

4.3.3 사용자 계정 관리 (ADMIN 이상)
기능: 일반 사용자 계정 관리는 ADMIN 이상 필요

체크 함수: hasUserAccountEditPermission(adminRole) (설계 의도)
현재 구현: isAdmin(adminRole) (모든 Admin 허용)

구현 :

export function isAdmin(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN ||

 adminRole === CODE_SYS_ADMIN_ROLES.ADMIN ||

 adminRole === CODE_SYS_ADMIN_ROLES.EDITOR ||

 adminRole === CODE_SYS_ADMIN_ROLES.VIEWER;

}

체크 이유:

1. 개인정보 보호: 사용자 이메일, 이름 등 민감 정보 접근 제한
2. 비밀번호 초기화: 민감한 작업은 상위 권한 필요
3. 역할 분리: EDITOR/VIEWER는 조회만 가능해야 함 (설계 의도)

적용 API:

 POST /api/admin/user-accounts - 사용자 생성
 PUT /api/admin/user-accounts/:id - 사용자 수정
 DELETE /api/admin/user-accounts/:id - 사용자 삭제

4.3.4 콘텐츠 편집 (EDITOR 이상)
기능: FAQ, Q&A, 공지사항은 EDITOR 이상 편집 가능

체크 함수: hasContentEditPermission(adminRole) (설계 의도)

IITP DABT Admin Backend 설계서

30 / 112

구현 :

export function hasContentEditPermission(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN ||

 adminRole === CODE_SYS_ADMIN_ROLES.ADMIN ||

 adminRole === CODE_SYS_ADMIN_ROLES.EDITOR;

}

체크 이유:

1. 역할 분리: VIEWER는 조회만 가능
2. 콘텐츠 품질 관리: EDITOR는 콘텐츠 관리 전담 역할
3. 작업 추적: 누가 콘텐츠를 작성/수정했는지 명확히 기록

적용 API :

 POST /api/admin/faqs - FAQ 생성
 PUT /api/admin/faqs/:id - FAQ 수정
 DELETE /api/admin/faqs/:id - FAQ 삭제
Q&A, 공지사항도 동일

4.3.5 조회 권한 (모든 Admin)
기능: 조회는 모든 관리자 가능

체크 함수: isAdmin(adminRole)

체크 이유:

1. VIEWER 역할 보장: VIEWER는 조회만 가능한 역할
2. 데이터 분석: 모든 관리자가 데이터 조회 및 분석 가능
3. 모니터링: 시스템 상태 확인

적용 API:

 GET /api/admin/user-accounts - 사용자 목록
 GET /api/admin/faqs - FAQ 목록
 GET /api/admin/qnas - Q&A 목록
기타 모든 조회 API

IITP DABT Admin Backend 설계서

31 / 112

체크 실패 시: ErrorCode.FORBIDDEN (403)

4.3.6 권한 체크 함수 목록

함수명 허용 역할 목적 파일 위치

 isSAdmin(role) S-ADMIN
운영자/코드
관리

 utils/auth.ts

 hasAccountManagementPermission(role) S-ADMIN
운영자 계정
관리

 utils/auth.ts

 hasUserAccountEditPermission(role) ADMIN+
사용자 계정
편집

 utils/auth.ts

 hasContentEditPermission(role) EDITOR+ 콘텐츠 편집 utils/auth.ts

 isAdmin(role)
ALL
Admin

조회 권한 utils/auth.ts

 checkSuperRole(req) S-ADMIN 통합 헬퍼 utils/commonUtils.ts

 getAdminRole(req) - 역할 추출 utils/auth.ts

전체 함수 목록 및 사용 예시: 프로젝트 아키텍처 가이드 Appendix C

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf#appendix-c-%EA%B6%8C%ED%95%9C-%EC%B2%B4%ED%81%AC-%ED%95%A8%EC%88%98

IITP DABT Admin Backend 설계서

32 / 112

4.4 권한 체크 Flow

[Client Request]

 POST /api/admin/faqs

 Authorization: Bearer <token>

 ↓

[accessLogMiddleware]

 - API 접근 로그 기록 시작

 ↓

[trimMiddleware]

 - 요청 데이터 공백 제거

 ↓

[adminAuthMiddleware]

 ├→ [authMiddleware]

 │ ├ JWT 검증

 │ ├ Payload 추출

 │ ├ req.user 설정

 │ │ { userId, userType, actorTag, admRole }

 │ └ Sliding Session 체크

 │ (만료 2분 전 → 새 토큰 생성)

 │

 └→ [userType 체크]

 userType === 'A'?

 ├ Yes → next()

 └ No → 403 Forbidden

 ↓

[Controller 실행]

 ├ getAdminRole(req)로 역할 추출

 ├ 권한 체크 함수 호출

 │ 예: hasContentEditPermission(adminRole)

 │

 ├ 권한 충분?

 │ ├ Yes → Service 호출

 │ └ No → 403 Forbidden

 │

 └ Service → Repository → DB

 ↓

[응답 반환]

 - 성공: 200 OK + data

 - 에러: 4xx/5xx + errorCode

 ↓

IITP DABT Admin Backend 설계서

33 / 112

[accessLogMiddleware]

 - API 접근 로그 기록 완료

IITP DABT Admin Backend 설계서

34 / 112

5. 주요 기능 상세
참고: API 엔드포인트 및 요청/응답 스펙은 API 규격서 참조
본 섹션은 기능 및 구현 로직 중심으로 설명합니다.

5.1 인증 및 회원가입

5.1.1 사용자 로그인
기능: 일반 사용자가 이메일과 비밀번호로 시스템에 로그인하는 기능

처리 Flow:

1. 요청 검증 (Common 패키지 검증 함수)

 - isValidEmail(email)

 - 비밀번호 길이 확인

2. DB 조회 (open_api_user)

 - login_id로 사용자 조회

 - status, del_yn 확인

3. 비밀번호 비교 (bcrypt)

 - bcrypt.compare(plainPassword, hashedPassword)

4. JWT 생성 (userType: 'U')

 - Access Token (15분)

 - Refresh Token (7일)

5. 로그 기록 (sys_log_user_access)

 - log_type='LOGIN', act_result='S'

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_user 조회 사용자 인증 정보 확인

 sys_log_user_access 생성 로그인 이력 기록

Error:

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP_ADMIN_API_%EA%B7%9C%EA%B2%A9%EC%84%9C.pdf

IITP DABT Admin Backend 설계서

35 / 112

이메일 형식 오류 → ErrorCode.INVALID_EMAIL (400)
사용자 없음 → ErrorCode.USER_NOT_FOUND (404)
비밀번호 불일치 → ErrorCode.AUTH_INVALID_CREDENTIALS (401)
계정 비활성 → ErrorCode.USER_INACTIVE (403)
삭제된 계정 → ErrorCode.USER_DELETED (403)

성공 결과: Access Token + Refresh Token 발급, 로그인 상태 유지

관련 API: POST /api/auth/login (상세는 API 규격서 참조)

5.1.2 관리자 로그인
기능: 관리자가 이메일과 비밀번호로 시스템에 로그인하며, 역할(Role) 정보도 함께 반환됩니다

처리 Flow:

1. 요청 검증

2. DB 조회 (sys_adm_account)

 - login_id로 관리자 조회

 - status, del_yn 확인

3. 비밀번호 비교 (bcrypt)

4. JWT 생성 (userType: 'A', role 포함)

 - Payload에 roles 추가

5. 로그 기록 (sys_log_user_access)

 - user_type='A', log_type='LOGIN'

6. 응답 반환 (role 정보 포함)

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 관리자 인증 및 역할 정보 확인

 sys_log_user_access 생성 관리자 로그인 이력 기록

Error:

사용자 로그인과 동일
추가: 관리자 없음 → ErrorCode.ADMIN_NOT_FOUND (404)

사용자 로그인과의 차이:

IITP DABT Admin Backend 설계서

36 / 112

사용자: role 정보 없음
관리자: role 정보 포함 (S-ADMIN, ADMIN, EDITOR, VIEWER)

관련 API: POST /api/auth/admin/login (상세는 API 규격서 참조)

5.1.3 토큰 재발급
기능: Access Token이 만료되었을 때 Refresh Token을 사용하여 새 토큰을 발급받는 기능

처리 Flow:

1. Refresh Token 검증 (JWT)

 - 토큰 형식 확인

 - 서명 검증

2. 토큰 만료 확인 (7일 이내)

3. 새 Access Token 생성

 - 동일한 Payload 사용

4. 새 Refresh Token 생성 (Rolling Refresh)

 - 보안 강화

5. 반환

DB 테이블 참조:

테이블 용도 설명

없음 - Refresh Token 검증만 (DB 접근 없음)

Error:

Refresh Token 없음 → ErrorCode.TOKEN_REQUIRED (401)
Refresh Token 만료 → ErrorCode.TOKEN_EXPIRED (401)
Refresh Token 무효 → ErrorCode.TOKEN_INVALID (401)

Sliding Session과의 차이:

Sliding Session: 만료 2분 전 자동 갱신 (사용자 인지 못함)
Refresh Token: 완전 만료 후 재발급 (명시적 요청)

관련 API: POST /api/auth/refresh (상세는 API 규격서 참조)

참고: 프로젝트 아키텍처 가이드 섹션 4.3 - 토큰 재발급 메커니즘 전체

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf#43-%ED%86%A0%ED%81%B0-%EC%9E%AC%EB%B0%9C%EA%B8%89-%EB%A9%94%EC%BB%A4%EB%8B%88%EC%A6%98

IITP DABT Admin Backend 설계서

37 / 112

5.1.4 사용자 회원가입
기능: 일반 사용자가 이메일과 비밀번호로 신규 계정을 생성하는 기능

처리 Flow:

1. 요청 검증 (Common 패키지)

 - isValidEmail(email)

 - isValidPassword(password)

 - isValidName(name)

2. 이메일 중복 확인 (open_api_user)

3. 비밀번호 해싱 (bcrypt, salt rounds: 10)

4. DB 생성 (open_api_user)

 - status: 'ACTIVE' (기본값)

 - del_yn: 'N'

5. 응답 반환 (userId)

DB 테이블 참조:

테이블 용도 설명

 open_api_user 조회 이메일 중복 확인

 open_api_user 생성 새 사용자 계정 생성

Error:

이메일 형식 오류 → ErrorCode.EMAIL_INVALID_FORMAT (400)
이메일 중복 → ErrorCode.EMAIL_ALREADY_EXISTS (409)
비밀번호 검증 실패 → ErrorCode.INVALID_PASSWORD (400)

8자 미만
영문/숫자/특수문자 미포함

이름 검증 실패 → ErrorCode.VALIDATION_ERROR (400)

관련 API: POST /api/user/register (상세는 API 규격서 참조)

5.1.5 이메일 중복 확인 (Public)
기능: 회원가입 전 이메일 주소의 중복 여부를 확인하는 기능

IITP DABT Admin Backend 설계서

38 / 112

처리 Flow:

1. 이메일 형식 검증 (isValidEmail)

2. DB 조회 (open_api_user WHERE login_id = ?)

3. 중복 여부 반환 (true/false)

DB 테이블 참조:

테이블 용도 설명

 open_api_user 조회 이메일(login_id) 중복 확인

Error:

이메일 형식 오류 → ErrorCode.EMAIL_INVALID_FORMAT (400)

응답: { isAvailable: boolean }

관련 API: POST /api/user/email/check (상세는 API 규격서 참조)

5.2 사용자 관리
권한 구분:

조회: 모든 관리자 (VIEWER 포함)
생성/수정/삭제: ADMIN 이상

5.2.1 사용자 목록 조회
기능: 관리자가 전체 사용자 목록을 조회하고 검색/필터링하는 기능

권한: 모든 관리자 (VIEWER 포함)

처리 Flow:

IITP DABT Admin Backend 설계서

39 / 112

1. 권한 체크 (isAdmin)

2. 쿼리 파라미터 파싱 (페이지, 검색어, 필터)

3. DB 조회 (open_api_user)

4. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_user 조회 사용자 목록 및 상태 정보 조회

쿼리 파라미터:

 page : 페이지 번호 (기본: 1)
 limit : 페이지당 개수 (기본: 10)
 search : 검색어 (이름, 이메일)
 status : 상태 필터 (ACTIVE, INACTIVE)

Error:

관리자 아님 → 접근 거부

관련 API: GET /api/admin/user-accounts (상세는 API 규격서 참조)

5.2.2 사용자 생성
기능: 관리자가 직접 일반 사용자 계정을 생성하는 기능

권한: ADMIN 이상

처리 Flow:

IITP DABT Admin Backend 설계서

40 / 112

1. 권한 체크

2. 요청 검증 (Common 패키지)

 - isValidEmail()

 - isValidPassword()

 - isValidName()

3. 이메일 중복 확인

4. 비밀번호 해싱 (bcrypt)

5. DB 생성 (open_api_user)

6. 변경 로그 기록 (sys_log_change_his)

7. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_user 조회 이메일 중복 확인

 open_api_user 생성 새 사용자 계정 생성

 sys_log_change_his 생성 사용자 생성 이력 기록

Error:

이메일 형식 오류 / 중복
비밀번호 검증 실패

관련 API: POST /api/admin/user-accounts (상세는 API 규격서 참조)

5.2.3 사용자 정보 수정
기능: 사용자의 이름, 소속, 계정 상태 등을 수정하는 기능

권한: ADMIN 이상

처리 Flow:

IITP DABT Admin Backend 설계서

41 / 112

1. 권한 체크

2. 사용자 존재 확인

3. 요청 검증

4. DB 업데이트 (open_api_user)

5. 변경 로그 기록 (before/after)

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_user 조회 수정 대상 사용자 존재 확인

 open_api_user 수정 사용자 정보 업데이트

 sys_log_change_his 생성 변경 전후 이력 기록 (JSONB)

Error:

사용자 없음
삭제된 사용자

관련 API: PUT /api/admin/user-accounts/:userId (상세는 API 규격서 참조)

5.2.4 사용자 삭제
기능: 사용자 계정을 논리적으로 삭제하는 기능 (복구 가능)

권한: ADMIN 이상

처리 Flow:

1. 권한 체크

2. 사용자 존재 확인

3. 논리 삭제 (del_yn='Y', deleted_at=NOW())

4. 변경 로그 기록

5. 응답 반환

DB 테이블 참조:

IITP DABT Admin Backend 설계서

42 / 112

테이블 용도 설명

 open_api_user 조회 삭제 대상 사용자 존재 확인

 open_api_user 수정 논리 삭제 처리 (del_yn='Y')

 sys_log_change_his 생성 삭제 이력 기록

Error:

사용자 없음
이미 삭제된 사용자

주요 특징:

물리 삭제 하지 않음 (Soft Delete)
변경 이력 기록 (감사 목적)
복구 가능

관련 API: DELETE /api/admin/user-accounts/:userId (상세는 API 규격서 참조)

5.2.5 사용자 일괄 삭제
기능: 선택한 여러 사용자 계정을 한 번에 논리 삭제하는 기능

권한: ADMIN 이상

처리 Flow:

1. 권한 체크

2. 사용자 ID 배열 검증 (userIds: number[])

3. 트랜잭션 시작

4. 각 사용자 존재 확인

5. 일괄 논리 삭제 (del_yn='Y' 설정)

6. 변경 로그 일괄 기록

7. 트랜잭션 커밋

8. 응답 반환 (성공/실패 개수)

DB 테이블 참조:

IITP DABT Admin Backend 설계서

43 / 112

테이블 용도 설명

 open_api_user 조회 대상 사용자들 존재 확인

 open_api_user 수정 여러 사용자 일괄 논리 삭제

 sys_log_change_his 생성 삭제 이력 일괄 기록

Error:

권한 없음 → ErrorCode.FORBIDDEN (403)
일부 사용자 없음 → 트랜잭션 롤백
트랜잭션 실패 → ErrorCode.DATABASE_ERROR (500)

주요 특징:

트랜잭션 보장: 전체 성공 또는 전체 실패
부분 실패 처리: 하나라도 실패하면 모두 롤백
실패 상세 반환: 실패한 사용자 ID 목록 제공

관련 API: POST /api/admin/user-accounts/list-delete (상세는 API 규격서 참조)

5.2.6 사용자 프로필 조회
기능: 로그인한 사용자가 본인의 프로필 정보를 조회하는 기능

권한: 사용자 인증 필요

처리 Flow:

1. 권한 체크 (authMiddleware)

2. req.user.userId 추출

3. DB 조회 (open_api_user WHERE user_id = ?)

4. 응답 반환 (비밀번호 제외)

DB 테이블 참조:

테이블 용도 설명

 open_api_user 조회 본인 프로필 정보 조회

IITP DABT Admin Backend 설계서

44 / 112

Error:

인증 실패 → ErrorCode.UNAUTHORIZED (401)
사용자 없음 → ErrorCode.USER_NOT_FOUND (404)

응답 데이터:

userId, email, name, affiliation, status, createdAt 등
제외: password (보안)

관련 API: GET /api/user/profile (상세는 API 규격서 참조)

5.2.7 사용자 프로필 수정
기능: 사용자가 본인의 이름, 소속 등 프로필 정보를 수정하는 기능

권한: 사용자 인증 필요

처리 Flow:

1. 권한 체크

2. 요청 검증 (name, affiliation)

3. DB 업데이트 (open_api_user)

4. 변경 로그 기록 (before/after)

5. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_user 조회 본인 계정 확인

 open_api_user 수정 프로필 정보 업데이트 (name, affiliation)

 sys_log_change_his 생성 변경 이력 기록

Error:

인증 실패 → ErrorCode.UNAUTHORIZED (401)
필수 필드 누락 → ErrorCode.VALIDATION_ERROR (400)

수정 불가 필드:

IITP DABT Admin Backend 설계서

45 / 112

email (이메일 변경 불가)
userId
status (관리자만 변경 가능)

관련 API: PUT /api/user/profile (상세는 API 규격서 참조)

5.2.8 사용자 비밀번호 변경
기능: 사용자가 본인의 비밀번호를 변경하는 기능 (현재 비밀번호 확인 필요)

권한: 사용자 인증 필요

처리 Flow:

1. 권한 체크

2. 현재 비밀번호 검증 (bcrypt.compare)

3. 새 비밀번호 검증 (isValidPassword)

4. 새 비밀번호 해싱 (bcrypt.hash)

5. DB 업데이트 (open_api_user.password)

6. 변경 로그 기록

7. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_user 조회 현재 비밀번호 확인

 open_api_user 수정 새 비밀번호 업데이트

 sys_log_change_his 생성 비밀번호 변경 이력

Error:

현재 비밀번호 불일치 → ErrorCode.AUTH_INVALID_CREDENTIALS (401)
새 비밀번호 검증 실패 → ErrorCode.INVALID_PASSWORD (400)
현재 비밀번호와 동일 → ErrorCode.SAME_AS_OLD_PASSWORD (400)

보안:

현재 비밀번호 필수 확인 (타인의 비밀번호 변경 방지)

IITP DABT Admin Backend 설계서

46 / 112

변경 이력 감사 로그 기록
bcrypt 재해싱 (salt rounds: 10)

관련 API: PUT /api/user/password (상세는 API 규격서 참조)

5.3 운영자 관리 (S-ADMIN 전용)
권한 구분:

모든 API: S-ADMIN만 접근 가능

5.3.1 운영자 목록 조회
기능: S-ADMIN이 전체 운영자 계정 목록을 조회하고 역할별로 필터링하는 기능

권한: S-ADMIN만

처리 Flow:

1. 권한 체크 (isSAdmin)

2. 쿼리 파라미터 파싱 (검색, 필터)

3. DB 조회 (sys_adm_account)

4. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 운영자 계정 및 역할 정보 조회

쿼리 파라미터:

 search : 검색어 (이름, 이메일)
 role : 역할 필터 (S-ADMIN, ADMIN, EDITOR, VIEWER)
 status : 상태 필터

IITP DABT Admin Backend 설계서

47 / 112

Error:

S-ADMIN 권한 없음

관련 API: GET /api/admin/admin-accounts (상세는 API 규격서 참조)

5.3.2 운영자 생성
기능: S-ADMIN이 새 운영자 계정을 생성하고 역할을 부여하는 기능

권한: S-ADMIN만

처리 Flow:

1. 권한 체크 (isSAdmin)

2. 요청 검증 (Common 패키지)

3. 이메일 중복 확인

4. 비밀번호 해싱 (bcrypt)

5. 역할 검증 (S-ADMIN, ADMIN, EDITOR, VIEWER)

6. DB 생성 (sys_adm_account)

7. 변경 로그 기록

8. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 이메일 중복 확인

 sys_adm_account 생성 새 운영자 계정 생성 (역할 포함)

 sys_log_change_his 생성 운영자 생성 이력 기록

Error:

S-ADMIN 권한 없음
이메일 형식 오류 / 중복
비밀번호 검증 실패
잘못된 역할 코드

주요 검증:

IITP DABT Admin Backend 설계서

48 / 112

역할 코드: S-ADMIN, ADMIN, EDITOR, VIEWER 중 하나
이메일 중복 확인
비밀번호 강도 검증

관련 API: POST /api/admin/admin-accounts (상세는 API 규격서 참조)

5.3.3 운영자 정보 수정
기능: 운영자의 이름, 소속, 설명 등 기본 정보를 수정하는 기능 (역할 제외)

권한: S-ADMIN만

처리 Flow:

1. 권한 체크 (isSAdmin)

2. 운영자 존재 확인

3. 요청 검증

4. DB 업데이트 (sys_adm_account)

5. 변경 로그 기록 (before/after)

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 수정 대상 운영자 존재 확인

 sys_adm_account 수정 운영자 기본 정보 업데이트

 sys_log_change_his 생성 변경 전후 이력 기록

Error:

S-ADMIN 권한 없음
운영자 없음
삭제된 운영자

관련 API: PUT /api/admin/admin-accounts/:adminId (상세는 API 규격서 참조)

IITP DABT Admin Backend 설계서

49 / 112

5.3.4 운영자 역할 변경
기능: 운영자의 역할(S-ADMIN, ADMIN, EDITOR, VIEWER)을 변경하여 권한을 부여하거나 회수하는 기능

권한: S-ADMIN만

처리 Flow:

1. 권한 체크 (isSAdmin)

2. 운영자 존재 확인

3. 새 역할 검증 (S-ADMIN, ADMIN, EDITOR, VIEWER)

4. DB 업데이트 (sys_adm_account.roles)

5. 변경 로그 기록 (중요: role 변경 이력)

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 대상 운영자 존재 및 현재 역할 확인

 sys_adm_account 수정 역할(roles) 업데이트

 sys_log_change_his 생성 역할 변경 이력 기록 (감사용)

Error:

S-ADMIN 권한 없음
운영자 없음
잘못된 역할 코드
본인 역할 변경 시도

보안:

본인의 S-ADMIN 역할은 변경 불가
역할 변경 이력 감사 로그에 기록

관련 API: PUT /api/admin/admin-accounts/:adminId/role (상세는 API 규격서 참조)

IITP DABT Admin Backend 설계서

50 / 112

5.3.5 운영자 삭제
기능: 운영자 계정을 논리적으로 삭제하는 기능

권한: S-ADMIN만

처리 Flow:

1. 권한 체크 (isSAdmin)

2. 운영자 존재 확인

3. 본인 삭제 방지 체크

4. 논리 삭제 (del_yn='Y')

5. 변경 로그 기록

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 삭제 대상 운영자 존재 확인

 sys_adm_account 수정 논리 삭제 처리 (del_yn='Y')

 sys_log_change_his 생성 삭제 이력 기록

Error:

S-ADMIN 권한 없음
운영자 없음
본인 삭제 시도
이미 삭제된 계정

보안: 본인 계정은 삭제 불가

관련 API: DELETE /api/admin/admin-accounts/:adminId (상세는 API 규격서 참조)

5.3.6 이메일 중복 확인
기능: 운영자 생성 전 이메일 주소의 중복 여부를 확인하는 기능

권한: S-ADMIN만

IITP DABT Admin Backend 설계서

51 / 112

처리 Flow:

1. 권한 체크 (isSAdmin)

2. 이메일 형식 검증

3. DB 조회 (sys_adm_account)

4. 중복 여부 반환

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 이메일 중복 확인 (login_id)

Error:

S-ADMIN 권한 없음
이메일 형식 오류

응답: 중복 여부 (true/false)

관련 API: POST /api/admin/admin-accounts/check-email (상세는 API 규격서 참조)

5.3.7 운영자 일괄 삭제
기능: 선택한 여러 운영자 계정을 한 번에 논리 삭제하는 기능

권한: S-ADMIN만

처리 Flow:

1. 권한 체크 (isSAdmin)

2. 운영자 ID 배열 검증 (adminIds: number[])

3. 본인 ID 포함 여부 체크 (포함 시 전체 거부)

4. 트랜잭션 시작

5. 각 운영자 존재 확인

6. 일괄 논리 삭제 (del_yn='Y')

7. 변경 로그 일괄 기록

8. 트랜잭션 커밋

9. 응답 반환

IITP DABT Admin Backend 설계서

52 / 112

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 대상 운영자들 존재 확인

 sys_adm_account 수정 여러 운영자 일괄 논리 삭제

 sys_log_change_his 생성 삭제 이력 일괄 기록

Error:

S-ADMIN 권한 없음 → ErrorCode.FORBIDDEN (403)
본인 ID 포함 → ErrorCode.CANNOT_DELETE_SELF (403)
일부 운영자 없음 → 트랜잭션 롤백
트랜잭션 실패 → ErrorCode.DATABASE_ERROR (500)

보안: 본인 계정 포함 시 전체 작업 거부

관련 API: POST /api/admin/admin-accounts/list-delete (상세는 API 규격서 참조)

5.3.8 관리자 프로필 조회
기능: 로그인한 관리자가 본인의 프로필 정보를 조회하는 기능

권한: 모든 관리자

처리 Flow:

1. 권한 체크 (adminAuthMiddleware)

2. req.user.userId 추출

3. DB 조회 (sys_adm_account WHERE adm_id = ?)

4. 응답 반환 (비밀번호 제외)

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 본인 프로필 정보 조회

Error:

IITP DABT Admin Backend 설계서

53 / 112

인증 실패 → ErrorCode.UNAUTHORIZED (401)
관리자 없음 → ErrorCode.ADMIN_NOT_FOUND (404)

응답 데이터:

adminId, loginId, name, affiliation, roles, status 등
제외: password (보안)

관련 API: GET /api/admin/profile (상세는 API 규격서 참조)

5.3.9 관리자 프로필 수정
기능: 관리자가 본인의 이름, 소속 등 프로필 정보를 수정하는 기능

권한: 모든 관리자

처리 Flow:

1. 권한 체크

2. 요청 검증 (name, affiliation)

3. DB 업데이트 (sys_adm_account)

4. 변경 로그 기록

5. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 본인 계정 확인

 sys_adm_account 수정 프로필 정보 업데이트

 sys_log_change_his 생성 변경 이력 기록

Error:

인증 실패 → ErrorCode.UNAUTHORIZED (401)
필수 필드 누락 → ErrorCode.VALIDATION_ERROR (400)

수정 불가 필드:

loginId (이메일 변경 불가)

IITP DABT Admin Backend 설계서

54 / 112

roles (역할은 S-ADMIN만 변경 가능, 별도 API 사용)
status

관련 API: PUT /api/admin/profile (상세는 API 규격서 참조)

5.3.10 관리자 비밀번호 변경
기능: 관리자가 본인의 비밀번호를 변경하는 기능 (현재 비밀번호 확인 필요)

권한: 모든 관리자

처리 Flow:

1. 권한 체크

2. 현재 비밀번호 검증 (bcrypt.compare)

3. 새 비밀번호 검증 (isValidPassword)

4. 새 비밀번호 해싱 (bcrypt.hash)

5. DB 업데이트

6. 변경 로그 기록

7. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_adm_account 조회 현재 비밀번호 확인

 sys_adm_account 수정 새 비밀번호 업데이트

 sys_log_change_his 생성 비밀번호 변경 이력

Error:

현재 비밀번호 불일치 → ErrorCode.AUTH_INVALID_CREDENTIALS (401)
새 비밀번호 검증 실패 → ErrorCode.INVALID_PASSWORD (400)
현재 비밀번호와 동일 → ErrorCode.SAME_AS_OLD_PASSWORD (400)

보안:

현재 비밀번호 필수 확인
변경 이력 감사 로그 기록

IITP DABT Admin Backend 설계서

55 / 112

bcrypt 재해싱 (salt rounds: 10)

관련 API: PUT /api/admin/password (상세는 API 규격서 참조)

5.4 콘텐츠 관리
권한 구분:

조회 (Public): 인증 불필요 (공개 콘텐츠)
조회 (User): 사용자 인증 (본인 Q&A)
조회 (Admin): 관리자 인증 (전체)
생성/수정/삭제: EDITOR 이상

5.4.1 FAQ 관리

(1) FAQ 목록 조회 (Public)

기능: 누구나 공개된 FAQ 목록을 조회할 수 있는 기능

처리 Flow:

1. 쿼리 파라미터 파싱

2. DB 조회 (use_yn='Y', del_yn='N')

3. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_faq 조회 공개 FAQ 목록 조회 (사용 중인 것만)

Error: 없음

관련 API: GET /api/faqs (상세는 API 규격서 참조)

IITP DABT Admin Backend 설계서

56 / 112

(2) FAQ 생성

기능: 관리자가 새로운 FAQ를 작성하는 기능

권한: EDITOR 이상

처리 Flow:

1. 권한 체크 (adminAuthMiddleware)

2. 요청 검증

3. DB 생성 (sys_faq)

4. 변경 로그 기록

5. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_faq 생성 새 FAQ 생성

 sys_log_change_his 생성 FAQ 생성 이력 기록

Error:

EDITOR 이상 권한 없음 (설계 의도)
필수 필드 누락

관련 API: POST /api/admin/faqs (상세는 API 규격서 참조)

(3) PUT /api/admin/faqs/:faqId (FAQ 수정 - Admin)

권한: adminAuthMiddleware

기능: 기존 FAQ 수정

처리 Flow:

IITP DABT Admin Backend 설계서

57 / 112

1. 권한 체크

2. FAQ 존재 확인

3. 요청 검증

4. DB 업데이트 (sys_faq)

5. 변경 로그 기록

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_faq 조회 수정 대상 FAQ 존재 확인

 sys_faq 수정 FAQ 정보 업데이트

 sys_log_change_his 생성 변경 전후 이력 기록

Error:

권한 없음
FAQ 없음 / 삭제된 FAQ

관련 API: PUT /api/admin/faqs/:faqId (상세는 API 규격서 참조)

(4) FAQ 삭제

기능: FAQ를 논리적으로 삭제하는 기능 (복구 가능)

권한: EDITOR 이상

처리 Flow:

1. 권한 체크

2. FAQ 존재 확인

3. 논리 삭제 (del_yn='Y')

4. 변경 로그 기록

5. 응답 반환

DB 테이블 참조:

IITP DABT Admin Backend 설계서

58 / 112

테이블 용도 설명

 sys_faq 조회 삭제 대상 FAQ 존재 확인

 sys_faq 수정 논리 삭제 처리

 sys_log_change_his 생성 삭제 이력 기록

Error:

권한 없음
FAQ 없음 / 이미 삭제됨

관련 API: DELETE /api/admin/faqs/:faqId (상세는 API 규격서 참조)

(5) FAQ 일괄 삭제

기능: 선택한 여러 FAQ를 한 번에 논리 삭제하는 기능

권한: EDITOR 이상

처리 Flow:

1. 권한 체크

2. FAQ ID 배열 검증 (faqIds: number[])

3. 트랜잭션 시작

4. 각 FAQ 존재 확인

5. 일괄 논리 삭제

6. 변경 로그 일괄 기록

7. 트랜잭션 커밋

8. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_faq 조회 대상 FAQ들 존재 확인

 sys_faq 수정 여러 FAQ 일괄 논리 삭제

 sys_log_change_his 생성 삭제 이력 일괄 기록

IITP DABT Admin Backend 설계서

59 / 112

Error:

권한 없음
일부 FAQ 없음 (트랜잭션 롤백)
트랜잭션 실패

주요 특징: 트랜잭션으로 전체 성공 또는 전체 실패

관련 API: POST /api/admin/faqs/list-delete (상세는 API 규격서 참조)

5.4.2 Q&A 관리

(1) 본인 Q&A 조회 (User)

기능: 일반 사용자가 본인이 작성한 Q&A 목록을 조회하는 기능

권한: 사용자 인증 필요

처리 Flow:

1. 권한 체크 (authMiddleware)

2. req.user.userId 추출

3. DB 조회 (sys_qna WHERE user_id = ?)

4. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_qna 조회 본인 Q&A 목록 조회

Error:

인증 실패 → ErrorCode.UNAUTHORIZED (401)

(2) POST /api/user/qnas (Q&A 작성 - User)

권한: authMiddleware → User 인증

IITP DABT Admin Backend 설계서

60 / 112

기능: 사용자가 Q&A 질문 작성

처리 Flow:

1. 권한 체크

2. 요청 검증

3. DB 생성 (sys_qna, user_id=req.user.userId)

4. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_qna 생성 새 Q&A 질문 생성 (사용자 작성)

Error:

인증 실패
필수 필드 누락

관련 API: POST /api/user/qnas (상세는 API 규격서 참조)

(3) 전체 Q&A 조회 (Admin)

기능: 관리자가 모든 사용자의 Q&A를 조회하는 기능 (비공개 Q&A 포함)

권한: 모든 관리자

처리 Flow:

1. 권한 체크 (adminAuthMiddleware)

2. 쿼리 파라미터 파싱

3. DB 조회 (sys_qna 전체)

4. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_qna 조회 전체 Q&A 목록 (비공개 포함)

IITP DABT Admin Backend 설계서

61 / 112

쿼리 파라미터:

 status : 상태 필터 (미답변/답변완료)
 search : 검색어

관련 API: GET /api/admin/qnas (상세는 API 규격서 참조)

(4) Q&A 답변 작성

기능: 관리자가 사용자의 질문에 답변을 작성하는 기능

권한: EDITOR 이상

처리 Flow:

1. 권한 체크

2. Q&A 존재 확인

3. 답변 내용 검증

4. DB 업데이트 (sys_qna.answer, answered_at)

5. 변경 로그 기록

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_qna 조회 답변 대상 Q&A 존재 확인

 sys_qna 수정 답변 내용 및 답변 시각 업데이트

 sys_log_change_his 생성 답변 이력 기록

Error:

권한 없음
Q&A 없음
이미 답변된 Q&A

주요 처리:

답변 내용 및 답변 시각 업데이트

IITP DABT Admin Backend 설계서

62 / 112

상태를 '답변완료'로 변경

관련 API: POST /api/admin/qnas/:qnaId/answer (상세는 API 규격서 참조)

(5) Q&A 수정

기능: Q&A의 질문 또는 답변 내용을 수정하는 기능

권한: EDITOR 이상

DB 테이블 참조:

테이블 용도 설명

 sys_qna 조회 수정 대상 Q&A 존재 확인

 sys_qna 수정 Q&A 정보 업데이트

 sys_log_change_his 생성 변경 이력 기록

Error:

권한 없음
Q&A 없음

관련 API: PUT /api/admin/qnas/:qnaId (상세는 API 규격서 참조)

(6) Q&A 삭제

기능: Q&A를 논리적으로 삭제하는 기능 (복구 가능)

권한: EDITOR 이상

DB 테이블 참조:

테이블 용도 설명

 sys_qna 조회 삭제 대상 Q&A 존재 확인

 sys_qna 수정 논리 삭제 처리

IITP DABT Admin Backend 설계서

63 / 112

테이블 용도 설명

 sys_log_change_his 생성 삭제 이력 기록

Error:

권한 없음
Q&A 없음

관련 API: DELETE /api/admin/qnas/:qnaId (상세는 API 규격서 참조)

(7) Q&A 일괄 삭제

기능: 선택한 여러 Q&A를 한 번에 논리 삭제하는 기능

권한: EDITOR 이상

처리 Flow:

1. 권한 체크

2. Q&A ID 배열 검증 (qnaIds: number[])

3. 트랜잭션 시작

4. 각 Q&A 존재 확인

5. 일괄 논리 삭제

6. 변경 로그 일괄 기록

7. 트랜잭션 커밋

8. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_qna 조회 대상 Q&A들 존재 확인

 sys_qna 수정 여러 Q&A 일괄 논리 삭제

 sys_log_change_his 생성 삭제 이력 일괄 기록

Error:

권한 없음

IITP DABT Admin Backend 설계서

64 / 112

일부 Q&A 없음 (트랜잭션 롤백)
트랜잭션 실패

관련 API: POST /api/admin/qnas/list-delete (상세는 API 규격서 참조)

5.4.3 공지사항 관리

(1) 공지사항 목록 조회 (Public)

기능: 누구나 공개된 공지사항 목록을 조회하는 기능 (중요 공지사항 상단 고정)

권한: Public

처리 Flow:

1. 쿼리 파라미터 파싱

2. DB 조회 (public_yn='Y', 게시 기간 내)

3. 응답 반환 (pinned_yn='Y' 우선)

DB 테이블 참조:

테이블 용도 설명

 sys_notice 조회 공개 공지사항 조회 (게시 중인 것만)

주요 특징:

중요 공지사항 (pinned_yn='Y') 우선 표시
게시 기간 내의 공지사항만 조회

관련 API: GET /api/notices (상세는 API 규격서 참조)

(2) 공지사항 생성

기능: 관리자가 새 공지사항을 작성하고 게시 기간을 설정하는 기능

권한: EDITOR 이상

처리 Flow:

IITP DABT Admin Backend 설계서

65 / 112

1. 권한 체크

2. 요청 검증

3. 게시 기간 검증 (start_dt < end_dt)

4. DB 생성 (sys_notice)

5. 변경 로그 기록

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_notice 생성 새 공지사항 생성

 sys_log_change_his 생성 공지사항 생성 이력 기록

Error:

관리자 아님 → ErrorCode.FORBIDDEN (403)
필수 필드 누락 → ErrorCode.VALIDATION_ERROR (400)
게시 기간 오류 → ErrorCode.INVALID_DATE_RANGE (400)

(3) PUT /api/admin/notices/:noticeId (공지사항 수정 - Admin)

권한: adminAuthMiddleware

기능: 기존 공지사항 수정

DB 테이블 참조:

테이블 용도 설명

 sys_notice 조회 수정 대상 공지사항 존재 확인

 sys_notice 수정 공지사항 정보 업데이트

 sys_log_change_his 생성 변경 전후 이력 기록

Error:

권한 없음
공지사항 없음

IITP DABT Admin Backend 설계서

66 / 112

게시 기간 오류

관련 API: PUT /api/admin/notices/:noticeId (상세는 API 규격서 참조)

(4) 공지사항 삭제

기능: 공지사항을 논리적으로 삭제하는 기능 (복구 가능)

권한: EDITOR 이상

DB 테이블 참조:

테이블 용도 설명

 sys_notice 조회 삭제 대상 공지사항 존재 확인

 sys_notice 수정 논리 삭제 처리

 sys_log_change_his 생성 삭제 이력 기록

Error:

권한 없음
공지사항 없음

관련 API: DELETE /api/admin/notices/:noticeId (상세는 API 규격서 참조)

(5) 공지사항 일괄 삭제

기능: 선택한 여러 공지사항을 한 번에 논리 삭제하는 기능

권한: EDITOR 이상

처리 Flow:

IITP DABT Admin Backend 설계서

67 / 112

1. 권한 체크

2. 공지사항 ID 배열 검증 (noticeIds: number[])

3. 트랜잭션 시작

4. 각 공지사항 존재 확인

5. 일괄 논리 삭제

6. 변경 로그 일괄 기록

7. 트랜잭션 커밋

8. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_notice 조회 대상 공지사항들 존재 확인

 sys_notice 수정 여러 공지사항 일괄 논리 삭제

 sys_log_change_his 생성 삭제 이력 일괄 기록

Error:

권한 없음
일부 공지사항 없음 (트랜잭션 롤백)
트랜잭션 실패

관련 API: POST /api/admin/notices/list-delete (상세는 API 규격서 참조)

5.4.4 콘텐츠 관리 공통 특징
Paranoid Delete (논리 삭제):

물리 삭제 하지 않음
 del_yn='Y' 설정
 deleted_at , deleted_by 기록
감사 목적 (복구 가능)

변경 이력 (sys_log_change_his):

모든 생성/수정/삭제 기록
JSONB 형식: {"bf": {...}, "af": {...}}

IITP DABT Admin Backend 설계서

68 / 112

작업자 정보: actor_type , actor_id

권한 구분:

설계: EDITOR 이상만 생성/수정/삭제
권장: Controller에 hasContentEditPermission() 추가

5.5 공통 코드 관리 (S-ADMIN 전용)
권한 구분:

모든 API: S-ADMIN만 접근 가능
현재 구현: checkSuperRole() 체크

5.5.1 코드 그룹 관리

(1) 코드 그룹 목록 조회

기능: S-ADMIN이 전체 코드 그룹 목록을 조회하고 그룹별 코드 개수를 확인하는 기능

권한: S-ADMIN만

처리 Flow:

1. 권한 체크 (checkSuperRole)

2. 쿼리 파라미터 파싱

3. DB 조회 (sys_common_code, GROUP BY grp_id)

4. 그룹별 코드 개수 계산

5. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_common_code 조회 코드 그룹 목록 및 그룹별 통계

IITP DABT Admin Backend 설계서

69 / 112

쿼리 파라미터:

 search : 검색어 (그룹 ID, 그룹명)
 useYn : 사용 여부 필터 (Y/N)

Error:

S-ADMIN 권한 없음

관련 API: GET /api/common-code/groups (상세는 API 규격서 참조)

(2) 코드 그룹 생성

기능: 새 코드 그룹을 생성하고 그룹에 속한 코드들을 한 번에 등록하는 기능

권한: S-ADMIN만

처리 Flow:

1. 권한 체크 (checkSuperRole)

2. 요청 검증

3. 그룹 ID 중복 확인

4. DB 트랜잭션 시작

5. 그룹에 속한 코드들 일괄 생성

6. 트랜잭션 커밋

7. 변경 로그 기록

8. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_common_code 조회 그룹 ID 중복 확인

 sys_common_code 생성 그룹 + 코드들 일괄 생성 (트랜잭션)

 sys_log_change_his 생성 코드 그룹 생성 이력 기록

Error:

S-ADMIN 권한 없음
그룹 ID 중복

IITP DABT Admin Backend 설계서

70 / 112

필수 필드 누락
트랜잭션 실패

주요 특징: 트랜잭션으로 그룹 + 코드들 원자적 생성 (전체 성공 또는 전체 실패)

관련 API: POST /api/common-code/groups (상세는 API 규격서 참조)

(3) 코드 그룹 수정

기능: 코드 그룹의 이름과 설명을 수정하는 기능

권한: S-ADMIN만

처리 Flow:

1. 권한 체크

2. 그룹 존재 확인

3. 요청 검증

4. DB 업데이트 (sys_common_code WHERE grp_id = ?)

5. 변경 로그 기록

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_common_code 조회 수정 대상 그룹 존재 확인

 sys_common_code 수정 그룹명(grp_nm) 업데이트

 sys_log_change_his 생성 변경 이력 기록

Error:

S-ADMIN 권한 없음
그룹 없음

주의: 그룹 ID는 변경 불가 (시스템 전체 영향)

관련 API: PUT /api/common-code/groups/:grpId (상세는 API 규격서 참조)

IITP DABT Admin Backend 설계서

71 / 112

(4) 코드 그룹 삭제

기능: 코드 그룹과 그룹에 속한 모든 코드를 논리적으로 삭제하는 기능

권한: S-ADMIN만

처리 Flow:

1. 권한 체크

2. 그룹 존재 확인

3. 시스템 코드 그룹 보호 체크 (sys_admin_roles 등)

4. 트랜잭션: 그룹 내 모든 코드 논리 삭제

5. 변경 로그 기록

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_common_code 조회 삭제 대상 그룹 존재 확인

 sys_common_code 수정 그룹 내 모든 코드 논리 삭제

 sys_log_change_his 생성 삭제 이력 기록

Error:

S-ADMIN 권한 없음
그룹 없음
시스템 코드 그룹 삭제 시도

보안: sys_admin_roles , sys_data_status 등 시스템 필수 코드 그룹은 삭제 불가

관련 API: DELETE /api/common-code/groups/:grpId (상세는 API 규격서 참조)

5.5.2 개별 코드 관리

(1) 코드 추가

기능: 기존 코드 그룹에 새로운 코드를 추가하는 기능

권한: S-ADMIN만

IITP DABT Admin Backend 설계서

72 / 112

처리 Flow:

1. 권한 체크

2. 그룹 존재 확인

3. 코드 ID 중복 확인

4. DB 생성 (sys_common_code)

5. 변경 로그 기록

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_common_code 조회 그룹 존재 및 코드 중복 확인

 sys_common_code 생성 새 코드 추가

 sys_log_change_his 생성 코드 생성 이력 기록

Error:

S-ADMIN 권한 없음
그룹 없음
코드 ID 중복

관련 API: POST /api/common-code/codes/:grpId (상세는 API 규격서 참조)

(2) 코드 수정

기능: 코드의 이름, 설명, 정렬 순서를 수정하는 기능

권한: S-ADMIN만

처리 Flow:

IITP DABT Admin Backend 설계서

73 / 112

1. 권한 체크

2. 코드 존재 확인

3. 요청 검증

4. DB 업데이트 (sys_common_code)

5. 변경 로그 기록

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_common_code 조회 수정 대상 코드 존재 확인

 sys_common_code 수정 코드명, 설명, 정렬 순서 업데이트

 sys_log_change_his 생성 변경 이력 기록

Error:

S-ADMIN 권한 없음
코드 없음

주의: 코드 ID는 변경 불가 (시스템 전체 영향, Frontend에서 참조)

관련 API: PUT /api/common-code/codes/:grpId/:codeId (상세는 API 규격서 참조)

(3) 코드 삭제

기능: 개별 코드를 논리적으로 삭제하는 기능

권한: S-ADMIN만

처리 Flow:

1. 권한 체크

2. 코드 존재 확인

3. 시스템 필수 코드 보호 체크

4. 논리 삭제 (del_yn='Y')

5. 변경 로그 기록

6. 응답 반환

IITP DABT Admin Backend 설계서

74 / 112

DB 테이블 참조:

테이블 용도 설명

 sys_common_code 조회 삭제 대상 코드 존재 확인

 sys_common_code 수정 논리 삭제 처리

 sys_log_change_his 생성 삭제 이력 기록

Error:

S-ADMIN 권한 없음
코드 없음
시스템 필수 코드 삭제 시도

보안: S-ADMIN, ADMIN, EDITOR, VIEWER 등 역할 코드는 삭제 불가

관련 API: DELETE /api/common-code/codes/:grpId/:codeId (상세는 API 규격서 참조)

5.5.3 공통 코드 조회 (Public)

(1) 그룹별 코드 조회

기능: Frontend에서 드롭다운, 필터 등에 사용할 코드 목록을 조회하는 기능

권한: Public

처리 Flow:

1. DB 조회 (sys_common_code WHERE grp_id = ?, use_yn='Y')

2. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 sys_common_code 조회 그룹별 코드 목록 (사용 중인 것만)

Error: 없음 (빈 배열 반환 가능)

IITP DABT Admin Backend 설계서

75 / 112

활용 예시:

FAQ 타입 드롭다운
공지사항 유형 필터
상태 선택 옵션

관련 API: GET /api/common-code/:grpId (상세는 API 규격서 참조)

(2) 코드 상세 조회

기능: 특정 코드의 상세 정보를 조회하는 기능

권한: Public

DB 테이블 참조:

테이블 용도 설명

 sys_common_code 조회 코드 상세 정보 조회

Error:

코드 없음

관련 API: GET /api/common-code/:grpId/:codeId (상세는 API 규격서 참조)

5.5.4 공통 코드 시스템 특징
시스템 코드 보호:

 sys_admin_roles : 관리자 역할 (S-ADMIN, ADMIN, EDITOR, VIEWER)
 sys_data_status : 데이터 상태
 sys_work_type : 작업 유형

→ 이러한 시스템 필수 코드는 삭제/수정 시 검증 로직 필요

계층 구조 지원:

 parent_grp_id , parent_code_id : 부모 코드 참조
 code_lvl : 코드 레벨 (1, 2, 3...)

IITP DABT Admin Backend 설계서

76 / 112

 sort_order : 정렬 순서

코드 타입:

 B (Basic): 기본 코드
 A (Advanced): 고급 코드
 S (System): 시스템 코드

활용:

Frontend: 드롭다운, 필터, 라벨 표시
Backend: 상태 검증, 타입 체크

5.6 OpenAPI 키 관리
핵심 비즈니스 기능: IITP DABT 플랫폼의 Open API 서비스 제공을 위한 인증키 관리

권한 구분:

사용자 (User): 본인 키만 조회/신청/연장/삭제
관리자 (Admin): 전체 키 조회/승인/거부/관리
현재 구현: authMiddleware (User), adminAuthMiddleware (Admin) ✅

5.6.1 사용자 OpenAPI 키 관리 (User)

(1) 본인 API 키 목록 조회

기능: 사용자가 본인이 신청한 OpenAPI 인증키 목록을 조회하는 기능

권한: 사용자 인증 필요

처리 Flow:

IITP DABT Admin Backend 설계서

77 / 112

1. 권한 체크 (authMiddleware)

2. req.user.userId 추출

3. DB 조회 (open_api_auth_key WHERE user_id = ?)

4. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_auth_key 조회 본인의 API 키 목록 조회

Error:

인증 실패 → ErrorCode.UNAUTHORIZED (401)

관련 API: GET /api/user/open-api (상세는 API 규격서 참조)

(2) API 키 상세 조회

기능: 특정 API 키의 상세 정보를 조회하는 기능 (본인 키만)

권한: 사용자 인증 필요

처리 Flow:

1. 권한 체크

2. DB 조회 (키 존재 및 소유권 확인)

3. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_auth_key 조회 API 키 상세 정보 및 소유권 확인

Error:

키 없음 → ErrorCode.API_KEY_NOT_FOUND (404)
다른 사용자의 키 → ErrorCode.FORBIDDEN (403)

IITP DABT Admin Backend 설계서

78 / 112

관련 API: GET /api/user/open-api/:keyId (상세는 API 규격서 참조)

(3) API 키 신청

기능: 사용자가 새로운 OpenAPI 인증키를 신청하는 기능

권한: 사용자 인증 필요

처리 Flow:

1. 권한 체크

2. 요청 검증 (키 이름, 설명)

3. API 키 생성 (utils/authKeyGenerator.ts)

 - crypto.randomBytes(30) 기반 60자 16진수 문자열 생성

 - 형식: /^[a-f0-9]{60}$/

4. DB 생성 (open_api_auth_key)

 - active_yn='N' (관리자 승인 대기)

 - user_id 설정

5. 응답 반환 (키 ID)

DB 테이블 참조:

테이블 용도 설명

 open_api_auth_key 생성 새 API 키 신청 (승인 대기 상태)

Error:

키 이름 검증 실패 → ErrorCode.VALIDATION_ERROR (400)
키 설명 검증 실패 → ErrorCode.VALIDATION_ERROR (400)

주요 특징:

신청 즉시 생성되지만 active_yn='N' (비활성)
관리자 승인 후 활성화 (active_yn='Y' , active_at 기록)
crypto.randomBytes 기반 고유 키로 중복 불가
60자 16진수 문자열 형식 (hex)

관련 API: POST /api/user/open-api (상세는 API 규격서 참조)

IITP DABT Admin Backend 설계서

79 / 112

(4) API 키 연장 요청

기능: 기존 API 키의 유효기간 연장을 요청하는 기능

권한: 사용자 인증 필요

처리 Flow:

1. 권한 체크

2. 키 존재 및 소유권 확인

3. 활성화 상태 확인

4. 연장 요청 기록

5. DB 업데이트

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_auth_key 조회 연장 대상 키 확인

 open_api_auth_key 수정 연장 요청 기록

Error:

키 없음 → ErrorCode.API_KEY_NOT_FOUND (404)
소유권 없음 → ErrorCode.FORBIDDEN (403)
비활성 키 → ErrorCode.API_KEY_INACTIVE (403)

관련 API: POST /api/user/open-api/extend (상세는 API 규격서 참조)

(5) API 키 삭제

기능: 사용자가 본인의 API 키를 논리 삭제하는 기능

권한: 사용자 인증 필요

처리 Flow:

IITP DABT Admin Backend 설계서

80 / 112

1. 권한 체크

2. 키 존재 및 소유권 확인

3. 논리 삭제 (del_yn='Y')

4. 변경 로그 기록

5. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_auth_key 조회 삭제 대상 키 확인

 open_api_auth_key 수정 논리 삭제 (del_yn='Y')

 sys_log_change_his 생성 삭제 이력 기록

Error:

키 없음 → ErrorCode.API_KEY_NOT_FOUND (404)
소유권 없음 → ErrorCode.FORBIDDEN (403)

관련 API: DELETE /api/user/open-api/:keyId (상세는 API 규격서 참조)

5.6.2 관리자 OpenAPI 키 관리 (Admin)

(1) 전체 API 키 목록 조회

기능: 관리자가 모든 사용자의 OpenAPI 키 목록을 조회하고 관리하는 기능

권한: 모든 관리자 (VIEWER 포함)

처리 Flow:

1. 권한 체크 (adminAuthMiddleware)

2. 쿼리 파라미터 파싱 (검색, 필터, 페이징)

3. DB 조회 (open_api_auth_key JOIN open_api_user)

4. 응답 반환

DB 테이블 참조:

IITP DABT Admin Backend 설계서

81 / 112

테이블 용도 설명

 open_api_auth_key 조회 전체 API 키 목록 조회

 open_api_user 조회 JOIN - 사용자 정보 포함

쿼리 파라미터:

 page : 페이지 번호
 limit : 페이지당 개수
 search : 검색어 (키 이름, 사용자 이름/이메일)
 activeYn : 활성화 상태 필터 (Y/N)
 status : 승인 상태 필터

Error:

관리자 권한 없음 → ErrorCode.FORBIDDEN (403)

관련 API: GET /api/admin/open-api (상세는 API 규격서 참조)

(2) API 키 통계 조회

기능: OpenAPI 키 현황 통계를 조회하는 기능 (대시보드용)

권한: 모든 관리자

처리 Flow:

1. 권한 체크

2. DB 집계 쿼리

 - COUNT(*) WHERE del_yn='N' (전체)

 - COUNT(*) WHERE active_yn='Y' (활성)

 - COUNT(*) WHERE active_yn='N' AND del_yn='N' (승인 대기)

3. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_auth_key 조회 통계 집계 (COUNT, GROUP BY)

IITP DABT Admin Backend 설계서

82 / 112

응답 데이터:

totalKeys: 전체 키 수
activeKeys: 활성 키 수
inactiveKeys: 비활성 키 수
pendingKeys: 승인 대기 키 수

관련 API: GET /api/admin/open-api/status (상세는 API 규격서 참조)

(3) API 키 상세 조회

기능: 특정 사용자의 API 키 상세 정보를 조회하는 기능

권한: 모든 관리자

처리 Flow:

1. 권한 체크

2. DB 조회 (open_api_auth_key JOIN open_api_user)

3. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_auth_key 조회 API 키 상세 정보

 open_api_user 조회 사용자 정보 (JOIN)

Error:

키 없음 → ErrorCode.API_KEY_NOT_FOUND (404)

관련 API: GET /api/admin/open-api/:keyId (상세는 API 규격서 참조)

(4) API 키 직접 생성

기능: 관리자가 특정 사용자를 위한 API 키를 직접 생성하는 기능 (즉시 활성화)

IITP DABT Admin Backend 설계서

83 / 112

권한: ADMIN 이상

처리 Flow:

1. 권한 체크

2. 대상 사용자 존재 확인 (user_id)

3. 요청 검증 (키 이름, 설명, 유효기간)

4. API 키 생성 (authKeyGenerator.ts)

 - crypto.randomBytes(30) 기반 60자 16진수 문자열 생성

 - 형식: /^[a-f0-9]{60}$/

5. DB 생성 (open_api_auth_key)

 - active_yn='Y' (즉시 활성화)

 - start_dt, end_dt 설정

 - active_at 기록

6. 변경 로그 기록

7. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_user 조회 대상 사용자 존재 확인

 open_api_auth_key 생성 새 API 키 생성 (즉시 활성)

 sys_log_change_his 생성 키 생성 이력 기록

Error:

권한 없음 → ErrorCode.FORBIDDEN (403)
사용자 없음 → ErrorCode.USER_NOT_FOUND (404)
키 이름 중복 → ErrorCode.VALIDATION_ERROR (400)

사용자 신청과의 차이:

사용자 신청: active_yn='N' (승인 대기)
관리자 생성: active_yn='Y' (즉시 활성)

관련 API: POST /api/admin/open-api (상세는 API 규격서 참조)

IITP DABT Admin Backend 설계서

84 / 112

(5) API 키 수정 (승인/거부)

기능: 사용자가 신청한 API 키를 승인하거나 거부하는 기능

권한: ADMIN 이상

처리 Flow:

1. 권한 체크

2. 키 존재 확인

3. 승인 시:

 - active_yn='Y' 설정

 - active_at 기록

 - start_dt, end_dt 설정

4. 거부 시:

 - active_yn='N' 유지

 - key_reject_reason 기록

5. DB 업데이트

6. 변경 로그 기록

7. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_auth_key 조회 대상 키 확인

 open_api_auth_key 수정 승인 상태 및 사유 업데이트

 sys_log_change_his 생성 승인/거부 이력 기록

Error:

권한 없음 → ErrorCode.FORBIDDEN (403)
키 없음 → ErrorCode.API_KEY_NOT_FOUND (404)
이미 활성화된 키 → ErrorCode.API_KEY_ALREADY_ACTIVE (400)

관련 API: PUT /api/admin/open-api/:keyId (상세는 API 규격서 참조)

(6) API 키 연장 승인

기능: 사용자의 API 키 연장 요청을 승인하여 유효기간을 연장하는 기능

IITP DABT Admin Backend 설계서

85 / 112

권한: ADMIN 이상

처리 Flow:

1. 권한 체크

2. 키 존재 확인

3. 연장 기간 계산 (예: 현재 종료일 + 90일)

4. DB 업데이트 (end_dt 연장)

5. 변경 로그 기록

6. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_auth_key 조회 연장 대상 키 확인

 open_api_auth_key 수정 유효기간(end_dt) 연장

 sys_log_change_his 생성 연장 이력 기록

Error:

권한 없음 → ErrorCode.FORBIDDEN (403)
키 없음 → ErrorCode.API_KEY_NOT_FOUND (404)
비활성 키 → ErrorCode.API_KEY_INACTIVE (403)

관련 API: POST /api/admin/open-api/:keyId/extend (상세는 API 규격서 참조)

(7) API 키 삭제

기능: 특정 사용자의 API 키를 논리 삭제하는 기능

권한: ADMIN 이상

처리 Flow:

IITP DABT Admin Backend 설계서

86 / 112

1. 권한 체크

2. 키 존재 확인

3. 논리 삭제 (del_yn='Y')

4. 변경 로그 기록

5. 응답 반환

DB 테이블 참조:

테이블 용도 설명

 open_api_auth_key 조회 삭제 대상 키 확인

 open_api_auth_key 수정 논리 삭제 (del_yn='Y')

 sys_log_change_his 생성 삭제 이력 기록

Error:

권한 없음 → ErrorCode.FORBIDDEN (403)
키 없음 → ErrorCode.API_KEY_NOT_FOUND (404)

관련 API: DELETE /api/admin/open-api/:keyId (상세는 API 규격서 참조)

(8) API 키 일괄 삭제

기능: 선택한 여러 API 키를 한 번에 논리 삭제하는 기능

권한: ADMIN 이상

처리 Flow:

1. 권한 체크

2. 키 ID 배열 검증 (keyIds: number[])

3. 트랜잭션 시작

4. 각 키 존재 확인

5. 일괄 논리 삭제

6. 변경 로그 일괄 기록

7. 트랜잭션 커밋

8. 응답 반환

DB 테이블 참조:

IITP DABT Admin Backend 설계서

87 / 112

테이블 용도 설명

 open_api_auth_key 조회 대상 키들 존재 확인

 open_api_auth_key 수정 여러 키 일괄 논리 삭제

 sys_log_change_his 생성 삭제 이력 일괄 기록

Error:

권한 없음 → ErrorCode.FORBIDDEN (403)
일부 키 없음 → 트랜잭션 롤백
트랜잭션 실패 → ErrorCode.DATABASE_ERROR (500)

주요 특징: 트랜잭션으로 전체 성공 또는 전체 실패

관련 API: POST /api/admin/open-api/list-delete (상세는 API 규격서 참조)

5.6.3 OpenAPI 키 시스템 특징
키 생성 알고리즘:

UUID v4 기반 고유 키 생성
중복 불가 보장
구현: utils/authKeyGenerator.ts

키 라이프사이클:

[신청] → [승인 대기] → [승인/거부] → [활성] → [연장] → [만료/삭제]

 ↓ ↓ ↓ ↓ ↓ ↓

User active_yn='N' Admin active_yn='Y' User del_yn='Y'

 start_dt/end_dt

 active_at 기록

상태 관리:

 active_yn : Y(활성) / N(비활성)
 del_yn : Y(삭제) / N(정상)
 start_dt , end_dt : 유효 기간
 active_at : 활성화 시각

IITP DABT Admin Backend 설계서

88 / 112

 latest_acc_at : 최종 접근 시각 (API 호출 시 업데이트)

보안:

사용자는 본인 키만 접근 가능
관리자는 전체 키 관리 가능
삭제된 키는 복구 가능 (논리 삭제)
만료된 키는 API 호출 불가

워크플로우:

1. 사용자 신청 → active_yn='N' (대기)
2. 관리자 승인 → active_yn='Y' , active_at 기록, 유효기간 설정
3. 사용자 사용 → latest_acc_at 업데이트
4. 만료 임박 시 → 사용자가 연장 요청
5. 관리자 연장 승인 → end_dt 연장
6. 불필요 시 → 사용자/관리자가 삭제

IITP DABT Admin Backend 설계서

89 / 112

6. 데이터베이스 설계
전체 DB 개요: 프로젝트 아키텍처 가이드 6장 참조

6.1 Sequelize 모델

6.1.1 모델 초기화 (models/index.ts)
데이터베이스 연결:

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf#6-%EB%8D%B0%EC%9D%B4%ED%84%B0%EB%B2%A0%EC%9D%B4%EC%8A%A4-%EA%B0%9C%EC%9A%94

IITP DABT Admin Backend 설계서

90 / 112

import { Sequelize } from 'sequelize';

import { getDecryptedEnv } from '../utils/decrypt';

const dbHost = process.env.DB_HOST || 'localhost';

const dbPort = parseInt(process.env.DB_PORT || '5432');

const dbName = process.env.DB_NAME || 'iitp_dabt_admin';

const dbUser = process.env.DB_USER || 'postgres';

const dbPassword = getDecryptedEnv('DB_PASSWORD') || '';

// Sequelize 인스턴스 생성

const sequelize = new Sequelize(dbName, dbUser, dbPassword, {

 host: dbHost,

 port: dbPort,

 dialect: 'postgres',

 logging: process.env.NODE_ENV === 'development' ? appLogger.info : false,

 pool: {

 max: 5,

 min: 0,

 acquire: 30000,

 idle: 10000

 }

});

// 모델 초기화

initOpenApiUser(sequelize);

initOpenApiAuthKey(sequelize);

initSysAdmAccount(sequelize);

initSysCommonCode(sequelize);

initSysFaq(sequelize);

initSysQna(sequelize);

initSysNotice(sequelize);

initSysLogUserAccess(sequelize);

initSysLogChangeHis(sequelize);

export default sequelize;

6.1.2 모델 파일 구조

모델 파일 테이블명 용도

 openApiUser.ts open_api_user 일반 사용자 계정

IITP DABT Admin Backend 설계서

91 / 112

모델 파일 테이블명 용도

 openApiAuthKey.ts open_api_auth_key OpenAPI 인증 키

 sysAdmAccount.ts sys_adm_account 관리자 계정

 sysCommonCode.ts sys_common_code 공통 코드

 sysFaq.ts sys_faq FAQ

 sysQna.ts sys_qna Q&A

 sysNotice.ts sys_notice 공지사항

 sysLogUserAccess.ts sys_log_user_access 접근 로그

 sysLogChangeHis.ts sys_log_change_his 변경 로그

6.2 주요 테이블 상세

6.2.1 open_api_user (일반 사용자)
테이블명: open_api_user

용도: 일반 사용자 계정 정보

스키마:

PK: user_id (INTEGER, AUTO_INCREMENT)
UK: login_id (이메일)

주요 컬럼:

 login_id : 로그인 이메일 (VARCHAR(100), UNIQUE)
 password : bcrypt 해시 (CHAR(60))
 user_name : 사용자 이름 (VARCHAR(100))
 status : 계정 상태 (VARCHAR(20))
 del_yn : 삭제 여부 (CHAR(1), 기본 'N')
 affiliation : 소속 (VARCHAR(100))

IITP DABT Admin Backend 설계서

92 / 112

 latest_login_at : 최근 로그인 시각 (TIMESTAMP)

인덱스:

UNIQUE(login_id)

특징:

논리 삭제 지원 (del_yn)
Sequelize Paranoid 미사용

6.2.2 sys_adm_account (관리자)
테이블명: sys_adm_account

용도: 관리자 계정 및 역할 정보

스키마:

PK: adm_id (INTEGER, AUTO_INCREMENT)
UK: login_id (이메일)

주요 컬럼:

 login_id : 관리자 이메일 (VARCHAR(100), UNIQUE)
 password : bcrypt 해시 (CHAR(60))
 name : 관리자 이름 (VARCHAR(100))
 roles : 역할 코드 (VARCHAR(20)) - S-ADMIN, ADMIN, EDITOR, VIEWER
 status : 계정 상태 (VARCHAR(20))
 del_yn : 삭제 여부 (CHAR(1), 기본 'N')
 affiliation : 소속 (VARCHAR(100))
 description : 설명 (VARCHAR(500))

인덱스:

UNIQUE(login_id)
INDEX(roles, status)

특징:

논리 삭제 지원

IITP DABT Admin Backend 설계서

93 / 112

roles 컬럼: 권한 체계의 핵심

6.2.3 sys_common_code (공통 코드)
테이블명: sys_common_code

용도: 시스템 공통 코드

스키마:

PK: (grp_id , code_id) (복합키)

주요 컬럼:

 grp_id : 코드 그룹 ID (VARCHAR(50))
 grp_nm : 코드 그룹 이름 (VARCHAR(100))
 code_id : 코드 ID (VARCHAR(50))
 code_nm : 코드 이름 (VARCHAR(100))
 code_type : 코드 타입 (CHAR(1)) - B/A/S
 parent_grp_id : 부모 그룹 ID (VARCHAR(50))
 parent_code_id : 부모 코드 ID (VARCHAR(50))
 code_lvl : 코드 레벨 (INTEGER)
 sort_order : 정렬 순서 (INTEGER)
 use_yn : 사용 여부 (CHAR(1), 기본 'Y')
 del_yn : 삭제 여부 (CHAR(1), 기본 'N')

인덱스:

PRIMARY KEY(grp_id, code_id)
INDEX(grp_id, use_yn, del_yn)

특징:

계층 구조 지원 (parent_grp_id, parent_code_id)
시스템 코드 보호 로직 필요

IITP DABT Admin Backend 설계서

94 / 112

6.2.4 sys_faq / sys_qna / sys_notice (콘텐츠)
공통 특징:

논리 삭제 지원 (del_yn='Y')
생성/수정/삭제 시 sys_log_change_his 기록
 created_by , updated_by , deleted_by 컬럼으로 작업자 추적

sys_faq:

PK: faq_id
주요 컬럼: question , answer , use_yn

sys_qna:

PK: qna_id
FK: user_id → open_api_user.user_id
주요 컬럼: question , answer , answered_at , status

sys_notice:

PK: notice_id
주요 컬럼: title , content , pinned_yn , public_yn , start_dt , end_dt

6.2.5 sys_log_user_access (접근 로그)
테이블명: sys_log_user_access

용도: 로그인/로그아웃 이력 기록

스키마:

PK: log_id (BIGINT, AUTO_INCREMENT)

주요 컬럼:

 user_id : 사용자/관리자 ID (INTEGER)
 user_type : 사용자 타입 (CHAR(1)) - U/A
 log_type : 로그 타입 (VARCHAR(8)) - LOGIN/LOGOUT
 act_result : 결과 (CHAR(1)) - S(성공)/F(실패)
 err_code : 에러 코드 (VARCHAR(10))

IITP DABT Admin Backend 설계서

95 / 112

 err_msg : 에러 메시지 (VARCHAR(200))
 ip_addr : IP 주소 (VARCHAR(50))
 user_agent : User Agent (VARCHAR(512))
 access_tm : 접근 시각 (TIMESTAMP)

인덱스:

INDEX(user_id, user_type, log_type)

특징:

성공/실패 모두 기록
보안 감사용

6.2.6 sys_log_change_his (변경 로그)
테이블명: sys_log_change_his

용도: 데이터 변경 이력 추적 (Audit Log)

스키마:

PK: log_id (BIGINT, AUTO_INCREMENT)

주요 컬럼:

 actor_type : 작업자 타입 (CHAR(1)) - U/A
 actor_id : 작업자 ID (BIGINT)
 action_type : 액션 타입 (VARCHAR(36)) - CREATE/UPDATE/DELETE
 target_type : 대상 타입 (VARCHAR(64)) - USER/ADMIN/FAQ 등
 target_id : 대상 ID (BIGINT)
 act_result : 결과 (CHAR(1)) - S/F
 chg_summary : 변경 내용 (JSONB) - {"bf": {...}, "af": {...}}
 err_code : 에러 코드 (VARCHAR(10))
 err_msg : 에러 메시지 (VARCHAR(200))
 ip_addr : IP 주소 (VARCHAR(50))
 act_tm : 액션 시각 (TIMESTAMP)

인덱스:

INDEX(actor_type, actor_id, action_type)

IITP DABT Admin Backend 설계서

96 / 112

INDEX(target_type, target_id)

특징:

JSONB 컬럼: 변경 전후 데이터 저장
모든 중요 작업 기록
감사 및 복구 목적

변경 내용 예시:

{

 "bf": { "name": "홍길동", "affiliation": "A팀" },

 "af": { "name": "홍길동", "affiliation": "B팀" }

}

6.2.7 open_api_auth_key (OpenAPI 인증키)
테이블명: open_api_auth_key

용도: OpenAPI 인증키 발급 및 관리

스키마:

PK: key_id (INTEGER, AUTO_INCREMENT)
FK: user_id → open_api_user.user_id
UK: auth_key (인증 키 문자열, UNIQUE)

주요 컬럼:

 key_id : 키 고유 ID (INTEGER)
 user_id : 소유자 사용자 ID (INTEGER, FK, NOT NULL)
 auth_key : 인증 키 문자열 (VARCHAR(255), UNIQUE, NOT NULL)
 active_yn : 활성화 여부 (CHAR(1), DEFAULT 'N') - Y/N
 start_dt : 유효 시작일 (DATE, NULLABLE)
 end_dt : 유효 종료일 (DATE, NULLABLE)
 del_yn : 삭제 여부 (CHAR(1), DEFAULT 'N')
 key_name : 키 이름 (VARCHAR(100), NOT NULL)
 key_desc : 키 설명 (TEXT, NULLABLE)
 key_reject_reason : 거부 사유 (TEXT, NULLABLE) - 거부 시에만

IITP DABT Admin Backend 설계서

97 / 112

 active_at : 활성화 시각 (TIMESTAMP, NULLABLE)
 latest_acc_at : 최종 접근 시각 (TIMESTAMP, NULLABLE)
 created_at , updated_at , deleted_at : Sequelize timestamps
 created_by , updated_by , deleted_by : 작업자 추적 (VARCHAR)

인덱스:

UNIQUE(auth_key) - 키 문자열 중복 방지
INDEX(user_id, active_yn) - 사용자별 활성 키 조회
INDEX(active_yn, del_yn) - 전체 활성/대기 키 조회
INDEX(end_dt) - 만료 키 조회

특징:

논리 삭제 지원: del_yn='Y' (복구 가능)
유효기간 관리: start_dt , end_dt 로 기간 제한
승인 워크플로우: active_yn='N' (대기) → active_yn='Y' (승인)
거부 처리: key_reject_reason 에 거부 사유 기록
사용 추적: latest_acc_at 으로 마지막 API 호출 시각 기록

관계:

belongsTo: open_api_user (user_id → user_id)
한 사용자는 여러 API 키 보유 가능
CASCADE 옵션 없음 (사용자 삭제 시 키 유지)

모델 파일: src/models/openApiAuthKey.ts

활용:

Frontend: 사용자 "My API Keys" 화면, 관리자 "API 키 관리" 화면
Backend: API 인증 (Auth Key 검증)
External API: 외부 시스템이 이 키로 IITP DABT Platform API 호출

보안:

 auth_key 는 UUID v4 (36자, 예: 550e8400-e29b-41d4-a716-446655440000)
추측 불가능한 고유값
HTTPS 통신 필수

IITP DABT Admin Backend 설계서

98 / 112

7. 환경 설정 및 배포

7.1 환경 변수
전체 환경 변수 목록: 프로젝트 아키텍처 가이드 Appendix D 참조

7.1.1 필수 환경 변수 (.env)

서버 설정

NODE_ENV=production

PORT=30000

데이터베이스

DB_HOST=your-db-host

DB_PORT=5432

DB_NAME=iitp_dabt_admin

DB_USER=your-db-user

DB_PASSWORD=your-db-password # 또는 ENC(암호화된값)

JWT

JWT_SECRET=your-jwt-secret

JWT_ISSUER=iitp-dabt-api

ACCESS_TOKEN_EXPIRES_IN=15m

REFRESH_TOKEN_EXPIRES_IN=7d

암호화

ENC_SECRET=your-encryption-secret

CORS

CORS_ORIGINS=https://your-domain.com,https://www.your-domain.com

로깅

LOG_LEVEL=warn

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf#appendix-d-%EC%A3%BC%EC%9A%94-%ED%99%98%EA%B2%BD-%EB%B3%80%EC%88%98-quick-reference

IITP DABT Admin Backend 설계서

99 / 112

7.2 빌드 및 배포 (간략)
상세 가이드: 서버 배포 및 설치 가이드 참조

7.2.1 로컬 개발 빌드

1. 의존성 설치

npm install

2. Common 패키지 빌드 (필수)

cd ../packages/common && npm run build && cd ../../be

3. Backend 빌드

npm run build

4. 실행

npm start

빌드 결과물: be/dist/

7.2.2 서버 배포 (PM2)

PM2로 실행

pm2 start dist/index.js --name iitp-dabt-adm-be

재시작

pm2 restart iitp-dabt-adm-be

로그 확인

pm2 logs iitp-dabt-adm-be

상태 확인

pm2 status

PM2 설정: script/start-server-be.js 참조

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%EB%B0%B0%ED%8F%AC%EC%84%A4%EC%B9%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf

IITP DABT Admin Backend 설계서

100 / 112

7.2.3 배포 전 체크리스트
 .env 파일 설정 완료 (운영 환경 값)
 NODE_ENV=production 설정
 DB 연결 정보 확인
 JWT_SECRET 강력한 값으로 설정
 민감 정보 암호화 (ENC(...))
 CORS_ORIGINS 정확히 설정
 LOG_LEVEL=warn 설정 (운영)
 Common 패키지 빌드 완료

상세 배포 절차: 서버 배포 및 설치 가이드 참조

7.3 로깅 (Winston 3-File Strategy)
상세 설명: 프로젝트 아키텍처 가이드 섹션 8.3 참조

본 시스템은 3개의 로그 파일로 로그를 분리하여 관리합니다.

7.3.1 App Log (app-YYYY-MM-DD.log)
용도: 비즈니스 로직, 애플리케이션 이벤트

경로: be/logs/app-YYYY-MM-DD.log

로그 레벨: info 이상 (info, warn, error)

로그 형식:

[2024-11-06 10:30:45] [INFO] 회원가입 성공: userId=123

[2024-11-06 10:31:20] [WARN] 토큰 만료 2분 전

[2024-11-06 10:32:10] [ERROR] DB 연결 실패: connection timeout

사용: appLogger.info() , appLogger.warn() , appLogger.error()

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%EB%B0%B0%ED%8F%AC%EC%84%A4%EC%B9%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf
file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf#83-%EB%A1%9C%EA%B9%85-%EB%B0%8F-%EA%B0%90%EC%82%AC

IITP DABT Admin Backend 설계서

101 / 112

구현 위치: src/utils/logger.ts

7.3.2 Access Log (access-YYYY-MM-DD.log)
용도: 모든 API 요청/응답 자동 기록

경로: be/logs/access-YYYY-MM-DD.log

로그 레벨: info

로그 형식:

[2024-11-06 10:30:45] : GET /api/user/profile 200 45ms

[2024-11-06 10:30:50] : POST /api/auth/login 200 123ms

[2024-11-06 10:31:00] : GET /api/admin/faqs 401 5ms

자동 기록: accessLogMiddleware 가 모든 API 호출 시 자동으로 기록

활용:

API 사용 패턴 분석
성능 모니터링 (느린 API 탐지)
트래픽 분석

구현 위치: src/middleware/accessLogMiddleware.ts

7.3.3 Error Log (error-YYYY-MM-DD.log)
용도: 에러만 별도 저장 (빠른 에러 추적)

경로: be/logs/error-YYYY-MM-DD.log

로그 레벨: error

로그 형식:

IITP DABT Admin Backend 설계서

102 / 112

[2024-11-06 10:32:10] [ERROR] DB 연결 실패: connection timeout

Error: connect ETIMEDOUT 192.168.1.100:5432

 at TCPConnectWrap.afterConnect [as oncomplete] (net.js:1144:16)

 at Protocol._enqueue (/app/node_modules/sequelize/lib/dialects/postgres/connection-manager.j

특징: 스택 트레이스 포함

7.3.4 로그 공통 설정
로그 로테이션:

방식: 일별 자동 로테이션
보관 기간: 30일
압축: 미사용 (빠른 조회 우선)

로그 레벨 설정 (환경 변수):

LOG_LEVEL=info # 개발: debug, 운영: warn

레벨 설명 기록 범위

 debug 디버그 모든 로그 (개발용)

 info 정보 info, warn, error (기본)

 warn 경고 warn, error (운영 권장)

 error 에러 error만

7.3.5 로그 모니터링 명령어
실시간 로그 확인:

IITP DABT Admin Backend 설계서

103 / 112

App 로그

tail -f be/logs/app-$(date +%Y-%m-%d).log

Access 로그

tail -f be/logs/access-$(date +%Y-%m-%d).log

Error 로그

tail -f be/logs/error-$(date +%Y-%m-%d).log

에러 검색:

특정 에러 검색

grep -i "database" be/logs/error-*.log

느린 API 찾기 (100ms 이상)

grep -E "[0-9]{3,}ms" be/logs/access-$(date +%Y-%m-%d).log

IITP DABT Admin Backend 설계서

104 / 112

8. 보안 및 암호화
참고: 보안 전반은 프로젝트 아키텍처 가이드 섹션 8 참조

8.1 환경 변수 암호화 (AES-256-CBC)
기능: 민감 정보(DB 비밀번호, JWT 비밀키) 보호

암호화 방식: AES-256-CBC (Jasypt 스타일)

8.1.1 암호화 스크립트

암호화 실행

cd be

node scripts/encrypt-env.js

프롬프트에 따라 입력

Enter encryption secret: your-enc-secret

Enter value to encrypt: mysecretpassword

결과

Encrypted: ENC(aGVsbG93b3JsZA==...)

스크립트 위치: be/scripts/encrypt-env.js

8.1.2 암호화된 값 사용
.env 파일:

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf#8-%EB%B3%B4%EC%95%88

IITP DABT Admin Backend 설계서

105 / 112

민감 정보를 암호화하여 저장

DB_PASSWORD=ENC(aGVsbG93b3JsZA==...)

JWT_SECRET=ENC(bXlzZWNyZXRrZXk=...)

ENC_SECRET은 평문으로 (별도 관리)

ENC_SECRET=your-encryption-secret

8.1.3 자동 복호화 (decrypt.ts)
개념: getDecryptedEnv() 함수가 자동으로 감지하여 복호화

동작:

1. 환경 변수 값이 ENC(...) 로 시작하면 → AES-256-CBC 복호화
2. 그렇지 않으면 → 평문 그대로 반환

사용 예시:

import { getDecryptedEnv } from './utils/decrypt';

// 자동 복호화

const dbPassword = getDecryptedEnv('DB_PASSWORD');

// ENC(...)이면 복호화, 아니면 평문 반환

// 데이터베이스 연결

const sequelize = new Sequelize(dbName, dbUser, dbPassword, {...});

구현 위치: be/src/utils/decrypt.ts

8.1.4 보안 주의사항
** 암호화 키 관리**:

 ENC_SECRET 은 .env 파일에 평문으로 저장
운영 서버에서는 환경 변수로만 설정 권장
Git에 커밋하지 말 것
서버 접근 권한이 있는 관리자만 알아야 함

IITP DABT Admin Backend 설계서

106 / 112

암호화 대상:

DB_PASSWORD
JWT_SECRET
기타 민감 정보

암호화 불필요:

DB_HOST, DB_PORT (공개 정보)
NODE_ENV, PORT (민감하지 않음)

8.2 비밀번호 해싱 (bcrypt)
기능: 사용자 비밀번호를 안전하게 저장

알고리즘: bcrypt (salt rounds: 10)

8.2.1 비밀번호 해싱
회원가입/비밀번호 변경 시:

import bcrypt from 'bcrypt';

// 평문 비밀번호 → 해시

const hashedPassword = await bcrypt.hash(password, 10);

// 결과: $2b$10$N9qo8uLOickgx2ZMRZoMyeIjZAgcfl...

저장 형식: CHAR(60) (bcrypt 해시 고정 길이)

구현 위치: Service 계층 (회원가입, 비밀번호 변경 로직)

IITP DABT Admin Backend 설계서

107 / 112

8.2.2 비밀번호 검증
로그인 시:

// 평문 비밀번호와 해시 비교

const isValid = await bcrypt.compare(plainPassword, hashedPassword);

// true/false 반환

주의: 해시를 평문으로 되돌릴 수 없음 (단방향)

구현 위치: Service 계층 (로그인 로직)

8.2.3 비밀번호 해싱 테스트

테스트 스크립트

node scripts/test-password-hash.js "your-password"

결과

Plain: your-password

Hash: $2b$10$N9qo8uLOickgx2ZMRZoMyeIjZAgcfl...

Verify: true

스크립트 위치: be/scripts/test-password-hash.js

IITP DABT Admin Backend 설계서

108 / 112

부록

Appendix A: API 응답 구조
참고: Common 패키지에 정의된 표준 응답 구조 사용

A.1 성공 응답

{

 "result": "ok",

 "data": {

 "userId": 123,

 "name": "홍길동",

 "email": "user@example.com"

 },

 "message": "Success"

}

필드 설명:

 result : 항상 "ok"
 data : 실제 응답 데이터 (타입은 API마다 다름)
 message : 선택적 메시지

A.2 에러 응답

{

 "result": "error",

 "errorCode": 14000,

 "message": "이메일 또는 비밀번호가 올바르지 않습니다."

}

필드 설명:

 result : 항상 "error"

IITP DABT Admin Backend 설계서

109 / 112

 errorCode : Common 패키지의 에러 코드 (11xxx~22xxx)
 message : 사용자에게 표시할 에러 메시지

IITP DABT Admin Backend 설계서

110 / 112

Appendix B: 트러블슈팅

B.1 데이터베이스 연결 실패
증상: Backend 실행 시 DB 연결 에러

확인 방법:

PostgreSQL 상태 확인

sudo systemctl status postgresql

연결 테스트

psql -h $DB_HOST -U $DB_USER -d $DB_NAME

로그 확인

tail -f be/logs/error-$(date +%Y-%m-%d).log

원인 및 해결:

1. PostgreSQL 미실행 → sudo systemctl start postgresql
2. DB 비밀번호 오류 → .env 파일 확인
3. DB 호스트 오류 → 네트워크 확인
4. 암호화된 비밀번호 복호화 실패 → ENC_SECRET 확인

B.2 포트 충돌
증상: Error: listen EADDRINUSE: address already in use :::30000

확인 방법:

포트 사용 확인

netstat -tulpn | grep :30000

또는

lsof -i :30000

프로세스 종료

kill -9 <PID>

IITP DABT Admin Backend 설계서

111 / 112

해결:

기존 프로세스 종료
또는 .env 에서 PORT 변경

B.3 JWT 토큰 에러
증상: TOKEN_INVALID 에러 빈번

원인:

1. JWT_SECRET 불일치 (BE 재시작 후 변경됨)
2. 시간 동기화 문제 (서버 시간 불일치)

해결:

JWT_SECRET 고정 (운영 환경)

.env 파일에 ENC(...)로 암호화하여 저장

시간 동기화 확인

date

B.4 로그 파일 용량 초과
증상: 디스크 공간 부족

확인 방법:

로그 디렉토리 용량 확인

du -sh be/logs/

오래된 로그 확인

ls -lh be/logs/

해결:

IITP DABT Admin Backend 설계서

112 / 112

30일 이전 로그 삭제 (자동)

Winston Daily Rotate File이 자동 관리

수동 삭제 (필요 시)

find be/logs/ -name "*.log" -mtime +30 -delete

