
IITP DABT Admin Frontend 설계서

1 / 82

IITP DABT Admin

Frontend 설계서

문서 버전: 1.0.0
작성일: 2025-11-14

(주)스위트케이

IITP DABT Admin Frontend 설계서

2 / 82

문서 History

버전 일자 작성자 변경 내용

1.0.0 2025-11-14 (주)스위트케이 최초 작성

IITP DABT Admin Frontend 설계서

3 / 82

목차

1. Frontend 시스템 개요
1.1 개요
1.2 Frontend 역할 및 책임
1.3 기술 스택
1.4 Common 패키지 활용
1.5 참고 문서

2. Frontend 아키텍처
2.1 Frontend 아키텍처 개요 (Component-Based Architecture)
2.2 계층 구조 상세
2.3 화면 로드 처리 흐름
2.4 UI 테마 및 스타일 (Material-UI)
2.5 의존성 관계도

3. 디렉토리 구조
3.1 전체 디렉토리 트리
3.2 빌드 및 설정 파일

4. 인증 및 권한 체계
4.1 JWT 토큰 관리
4.2 인증 상태 관리
4.3 사용자 정보 관리
4.4 User/Admin 독립 세션 관리 (핵심 로직)
4.5 권한 체크 유틸리티
4.6 라우트 가드

5. API 클라이언트
5.1 API 클라이언트 구조 및 공통 로직
5.2 API 모듈 목록 (테이블 형태)

6. 라우팅 구조
6.1 라우트 정의
6.2 라우팅 Flow

7. 주요 페이지 상세
7.1 공개 페이지 (Public) - 인증 불필요
7.2 사용자 페이지 (User) - 일반 사용자 인증 필요
7.3 관리자 페이지 (Admin) - 관리자 인증 필요
7.4 공통 페이지 (Common)

8. 공통 컴포넌트
8.1 컴포넌트 분류 및 역할
8.2 컴포넌트 목록 (테이블 형태)

9. 유틸리티 함수
9.1 유틸리티 함수 목록 (테이블 형태)
9.2 Custom React Hooks (테이블 형태)

10. 환경 설정 및 빌드

10.1 환경 변수 설정
10.2 빌드 설정
10.3 TypeScript 설정
10.4 빌드 및 배포

11. 예외 처리 및 에러 핸들링

11.1 API 에러 처리
11.2 사용자 친화적 에러 메시지
11.3 토큰 갱신 실패 시 처리
11.4 권한 부족 시 UI 처리

12. 성능 최적화

12.1 코드 스플리팅 (Lazy Loading)

IITP DABT Admin Frontend 설계서

4 / 82

12.2 Vite 빌드 최적화
12.3 API 요청 최적화

13. 보안

13.1 토큰 보안
13.2 권한 체크

14. 부록

14.1 주요 npm 패키지 설명
14.2 공통 타입 정의
14.3 프로젝트 아키텍처 가이드 참조
14.4 Backend API 규격서 참조

IITP DABT Admin Frontend 설계서

5 / 82

1. Frontend 시스템 개요

1.1 개요
IITP DABT Admin Frontend는 React 기반의 Single Page Application(SPA)으로, 사용자와 관리자를 위한 직관적인 웹 인터페이스를 제공합니다.

주요 특징:

Modern Stack: React 18, TypeScript, Vite, Material-UI
Component-Based Architecture: 재사용 가능한 컴포넌트 구조
Monorepo 구조: Common 패키지를 통한 BE/FE 코드 공유
독립 세션 관리: User/Admin 동시 로그인 지원
Role-Based UI Control: 권한별 UI 차별화 (VIEWER/EDITOR/ADMIN/S-ADMIN)

1.2 Frontend 역할 및 책임

영역 책임

UI/UX 사용자 인터페이스 제공 및 사용자 경험 최적화

Client-Side 검증 입력 데이터 형식 검증 (Common 패키지 활용)

인증 상태 관리 JWT 토큰 관리, 자동 갱신, 만료 체크

권한 기반 UI 제어 역할별 메뉴/버튼 표시 제어 (UX 목적)

API 통신 Backend API 호출 및 응답 처리

에러 핸들링 사용자 친화적 에러 메시지 표시

라우팅 SPA 라우팅 및 권한 기반 접근 제어

1.3 기술 스택

1.3.1 개발 환경 (필수)

환경 버전 용도

Node.js 22.x 이상 개발 서버 실행 및 프로덕션 빌드 (필수)

npm 9.x 이상 패키지 관리

중요:

개발/빌드 시: Node.js 필수
실행(런타임) 시: 브라우저에서 실행 (Node.js 불필요)
프로젝트 시작 전 Node.js와 npm 버전을 먼저 확인하세요.

1.3.2 Core 라이브러리

패키지 버전 용도

react ^18.2.0 UI 라이브러리

react-dom ^18.2.0 React DOM 렌더링

react-router-dom ^6.20.1 SPA 라우팅

typescript ^5.x 정적 타입 체킹

IITP DABT Admin Frontend 설계서

6 / 82

1.3.3 UI 프레임워크

패키지 버전 용도

@mui/material ^5.15.0 Material-UI 컴포넌트

@mui/icons-material ^5.15.0 Material-UI 아이콘

@emotion/react ^11.11.1 CSS-in-JS (MUI 의존성)

@emotion/styled ^11.11.0 Styled Components (MUI 의존성)

1.3.4 HTTP 클라이언트 및 상태 관리

패키지 버전 용도

axios ^1.11.0 HTTP 클라이언트 (실제로는 fetch 사용)

jwt-decode ^4.0.0 JWT 토큰 디코딩

참고: 실제 구현에서는 axios 대신 fetch API를 직접 사용합니다.

1.3.5 빌드 도구

패키지 버전 용도

vite ^5.0.8 빌드 도구 및 개발 서버

@vitejs/plugin-react ^4.2.1 Vite React 플러그인

1.3.6 Common 패키지

패키지 위치 용도

@iitp-dabt/common ../packages/common BE/FE 공유 코드

Common 패키지 제공 기능:

검증 함수: isValidEmail , isValidPassword , isValidName 등
ErrorCode 체계: 11xxx-22xxx 범위 에러 코드
공통 타입: API 요청/응답 타입
상수: API URL, 관리자 역할 코드 등

1.4 Common 패키지 활용
Frontend에서 Common 패키지를 다음과 같이 활용합니다:

import {

 isValidEmail,

 isValidPassword,

 ErrorCode,

 FULL_API_URLS,

 CODE_SYS_ADMIN_ROLES

} from '@iitp-dabt/common';

활용 예시:

1. 입력 검증:

if (!isValidEmail(email)) {

 return '유효하지 않은 이메일 형식입니다.';

}

IITP DABT Admin Frontend 설계서

7 / 82

2. ErrorCode 매핑:

if (data.errorCode === ErrorCode.UNAUTHORIZED) {

 return '인증이 필요합니다.';

}

3. API URL:

const url = `${API_BASE_URL}${FULL_API_URLS.AUTH.USER.LOGIN}`;

4. 관리자 역할 체크:

if (adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN) {

 // S-Admin 전용 기능

}

1.5 참고 문서
IITP DABT Admin 프로젝트 아키텍처 가이드 : 프로젝트 전체 아키텍처 설명
IITP DABT Admin Backend 상세 설계서 : Backend 상세 설계서
API 규격서 : API 스펙 상세
서버 배포 및 설치 가이드 : 서버 배포/설치/실행 가이드

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%ED%94%84%EB%A1%9C%EC%A0%9D%ED%8A%B8_%EC%95%84%ED%82%A4%ED%85%8D%EC%B2%98.pdf
file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_BE%EC%83%81%EC%84%B8%EC%84%A4%EA%B3%84%EC%84%9C.pdf
file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_API_%EA%B7%9C%EA%B2%A9%EC%84%9C.pdf
file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%EB%B0%B0%ED%8F%AC%EC%84%A4%EC%B9%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf

IITP DABT Admin Frontend 설계서

8 / 82

2. Frontend 아키텍처

2.1 Frontend 아키텍처 개요 (Component-Based Architecture)
Frontend는 Component-Based Architecture를 기반으로 5개의 계층으로 구성됩니다.

2.1.1 계층 구조

┌───┐

│ Presentation Layer │

│ (Pages - 화면) │

├───┤

│ Container Layer │

│ (Components - 재사용 컴포넌트) │

├───┤

│ Business Logic Layer │

│ (Store + Utils - 상태 및 로직) │

├───┤

│ Data Layer │

│ (API Client - Backend 통신) │

├───┤

│ Routing Layer │

│ (React Router - URL → Page 매핑) │

└───┘

2.1.2 계층 간 데이터 흐름

Frontend의 각 계층은 **단방향 데이터 흐름(Unidirectional Data Flow)**을 따릅니다.

요청 흐름 (Request Flow):

Browser (URL 입력/링크 클릭)

 ↓

React Router (Route 매칭)

 ↓

Route Guard (인증 체크: PrivateRoute/AdminProtectedRoute)

 ↓

Page Component (Lazy Loading + Suspense)

 ↓

useDataFetching Hook (상태 관리)

 ↓

API Client (apiFetch/publicApiFetch)

 ↓

Backend API (HTTP Request)

응답 흐름 (Response Flow):

Backend API (HTTP Response)

 ↓

API Client (응답 파싱, 에러 처리, 토큰 갱신)

 ↓

useDataFetching Hook (상태 업데이트: loading → success/error)

 ↓

Page Component (리렌더링 트리거)

 ↓

Container Components (Props 전달)

 ↓

Presentation Layer (UI 렌더링 완료)

 ↓

Browser (화면 표시)

IITP DABT Admin Frontend 설계서

9 / 82

상태 관리 흐름:

로딩 중: isLoading = true → LoadingSpinner 표시
성공: data 업데이트 → 실제 데이터 UI 렌더링
에러: isError = true → ErrorAlert 표시
빈 데이터: isEmpty = true → EmptyState 표시

2.2 계층 구조 상세

2.2.1 프레젠테이션 계층 (Presentation Layer) - Pages

역할: 사용자에게 보여지는 실제 화면 구성

구성:

 /src/pages/public - 공개 페이지 (로그인 불필요)
 /src/pages/user - 일반 사용자 페이지 (User 인증 필요)
 /src/pages/admin - 관리자 페이지 (Admin 인증 필요)

특징:

각 페이지는 Container 컴포넌트를 조합하여 구성
Business Logic은 최소화하고 표현에 집중
API 호출은 Data Layer를 통해 수행

예시:

// src/pages/admin/FaqList.tsx

export default function FaqList() {

 const [faqs, setFaqs] = useState([]);

 useEffect(() => {

 fetchFaqs(); // Data Layer 호출

 }, []);

 return (

 <Layout>

 <PageHeader title="FAQ 관리" />

 <DataTable data={faqs} />

 </Layout>

);

}

2.2.2 컨테이너 계층 (Container Layer) - Components

역할: 재사용 가능한 UI 컴포넌트 제공

구성:

 /src/components/common - 범용 컴포넌트 (DataTable, Pagination 등)
 /src/components/admin - 관리자 전용 컴포넌트 (SideNav, AdminPageHeader)
 /src/components - 기타 공통 컴포넌트 (Layout, Footer 등)

특징:

Props를 통한 데이터 전달
재사용성 극대화
비즈니스 로직 포함 최소화

예시:

IITP DABT Admin Frontend 설계서

10 / 82

// src/components/common/DataTable.tsx

export function DataTable({ data, columns, onRowClick }) {

 return (

 <TableContainer>

 <Table>

 {/* 테이블 렌더링 */}

 </Table>

 </TableContainer>

);

}

2.2.3 비즈니스 로직 계층 (Business Logic Layer) - Store + Utils

역할: 상태 관리 및 비즈니스 로직 처리

구성:

 /src/store/auth.ts - 인증 상태 관리 (토큰 저장/조회/갱신)
 /src/store/user.ts - 사용자 정보 관리
 /src/utils/auth.ts - 권한 체크 함수
 /src/utils/jwt.ts - JWT 토큰 처리
 /src/utils/date.ts - 날짜 포맷팅
 /src/utils/openApiStatus.ts - OpenAPI 상태 처리

특징:

LocalStorage를 통한 상태 영속화
User/Admin 독립 세션 관리 (prefix 분리)
순수 함수 중심

예시:

// src/store/auth.ts

export function saveTokens(accessToken: string, refreshToken: string) {

 const prefix = getCurrentPrefix(); // user_ or admin_

 localStorage.setItem(prefix + 'accessToken', accessToken);

 localStorage.setItem(prefix + 'refreshToken', refreshToken);

}

2.2.4 데이터 계층 (Data Layer) - API Client

역할: Backend API 통신 및 데이터 처리

구성:

 /src/api/api.ts - 공통 API 요청 함수 (apiFetch, publicApiFetch)
 /src/api/user.ts - 사용자 인증 API
 /src/api/admin.ts - 관리자 인증 API
 /src/api/faq.ts - FAQ API
 /src/api/qna.ts - QnA API
등 (API 모듈별로 분리)

특징:

토큰 자동 갱신 (401 에러 시)
ErrorCode 기반 에러 처리
타임아웃 및 재시도 로직

예시:

IITP DABT Admin Frontend 설계서

11 / 82

// src/api/faq.ts

export async function getFaqs(params) {

 return await apiFetch('/api/admin/faq', {

 method: 'GET',

 // 자동 토큰 포함, 401 시 자동 갱신

 });

}

2.2.5 라우팅 계층 (Routing Layer) - React Router

역할: URL과 Page 컴포넌트 매핑, 권한 기반 접근 제어

구성:

 /src/routes/index.ts - 라우트 정의 (ROUTES 객체)
 /src/App.tsx - 라우트 설정 및 Guard 적용
 /src/components/ProtectedRoute.tsx - 권한 체크 Guard

특징:

Public / User / Admin / Common 라우트 분리
 PrivateRoute - 일반 사용자 인증 체크
 AdminProtectedRoute - 관리자 인증 체크
인증 실패 시 로그인 페이지 리다이렉트

예시:

// src/App.tsx

<Route

 path="/admin/faqs"

 element={

 <AdminProtectedRoute>

 <FaqList />

 </AdminProtectedRoute>

 }

/>

2.3 화면 로드 처리 흐름
모든 화면은 통일된 처리 흐름을 따릅니다. 사용자가 URL을 입력하거나 링크를 클릭했을 때부터 화면이 완전히 렌더링될 때까지의 전체 과정을 설명합니다.

2.3.1 전체 처리 흐름 (예: FAQ 관리 페이지)

시나리오: 사용자가 /admin/faqs URL에 접근하여 FAQ 목록을 조회하는 경우

IITP DABT Admin Frontend 설계서

12 / 82

┌──┐

│ 사용자 액션 │

│ - URL 직접 입력: /admin/faqs │

│ - 또는 링크 클릭: <Link to="/admin/faqs">FAQ 관리</Link> │

└─────────────┬──┘

 ↓

┌───┐

│ React Router (BrowserRouter) │

│ -------------------------------- │

│ - URL 파싱: /admin/faqs │

│ - Route 매칭: ROUTES.ADMIN.FAQ.LIST │

│ - Route 정의 확인: App.tsx │

└─────────────┬───┘

 ↓

┌───┐

│ Route Guard (AdminProtectedRoute) │

│ -------------------------------- │

│ - isAdminAuthenticated() 호출 │

│ │ │

│ ├─ admin_accessToken 유효? │

│ │ └─ YES → 다음 단계 진행 │

│ │ │

│ └─ NO → /admin/login 리다이렉트 │

│ (state: { from: '/admin/faqs' } 저장) │

└─────────────┬───┘

 ↓

┌───┐

│ Lazy Loading (Suspense) │

│ -------------------------------- │

│ - AdminFaqList 컴포넌트 동적 import │

│ - 로딩 중: <LoadingSpinner loading={true} /> 표시 │

│ - 로드 완료: 컴포넌트 마운트 │

└─────────────┬───┘

 ↓

┌───┐

│ Page Component (FaqList.tsx) │

│ -------------------------------- │

│ - 컴포넌트 마운트 (useEffect 실행) │

│ - useDataFetching Hook 초기화 │

│ - 상태 초기값: { status: 'loading' } │

└─────────────┬───┘

 ↓

┌───┐

│ useDataFetching Hook │

│ -------------------------------- │

│ - fetchFunction: () => getAdminFaqList({ ... }) │

│ - autoFetch: true (자동 실행) │

│ - dependencies: [page, limit, searchTerm, ...] │

│ - 상태: { status: 'loading' } │

└─────────────┬───┘

 ↓

┌───┐

│ API Client (apiFetch) │

│ -------------------------------- │

│ - URL: /api/admin/faq │

│ - Method: GET │

│ - Headers: │

│ - Authorization: Bearer {admin_accessToken} │

│ - Content-Type: application/json │

│ - Request Body: { page: 1, limit: 10, ... } │

└─────────────┬───┘

 ↓

┌───┐

│ Backend API (HTTP Request) │

│ -------------------------------- │

IITP DABT Admin Frontend 설계서

13 / 82

│ POST /api/admin/faq │

│ { page: 1, limit: 10, ... } │

└─────────────┬───┘

 ↓

┌───┐

│ Backend API (HTTP Response) │

│ -------------------------------- │

│ Status: 200 OK │

│ Body: { │

│ success: true, │

│ data: { │

│ items: [...], │

│ total: 50, │

│ page: 1, │

│ limit: 10, │

│ totalPages: 5 │

│ } │

│ } │

└─────────────┬───┘

 ↓

┌───┐

│ API Client (응답 처리) │

│ -------------------------------- │

│ - 응답 파싱: res.json() │

│ - enhanceApiResponse() 호출 │

│ - 에러 체크: res.ok 확인 │

│ - 401 에러 시: 토큰 갱신 시도 (자동) │

│ - 성공: ApiResponse<T> 반환 │

└─────────────┬───┘

 ↓

┌───┐

│ useDataFetching Hook (상태 업데이트) │

│ -------------------------------- │

│ - 응답 데이터 확인: response.success && response.data │

│ - 페이징 데이터 확인: items 배열 존재 여부 │

│ - 상태 업데이트: │

│ { status: 'success', data: response.data } │

│ - 컴포넌트 리렌더링 트리거 │

└─────────────┬───┘

 ↓

┌───┐

│ Page Component (조건부 렌더링) │

│ -------------------------------- │

│ - isLoading 체크: false (로딩 완료) │

│ - isError 체크: false (에러 없음) │

│ - data 확인: faqData?.items 존재 │

│ - isEmpty 체크: false (데이터 있음) │

│ - 실제 UI 렌더링: │

│ <ListScaffold> │

│ <DataTable data={faqData.items} /> │

│ <Pagination ... /> │

│ </ListScaffold> │

└─────────────┬───┘

 ↓

┌───┐

│ Container Components │

│ -------------------------------- │

│ - ListScaffold: 페이지 레이아웃 │

│ - DataTable: FAQ 목록 테이블 │

│ - Pagination: 페이지네이션 컨트롤 │

│ - 각 컴포넌트에 Props 전달 │

└─────────────┬───┘

 ↓

┌───┐

│ Presentation Layer (최종 렌더링) │

IITP DABT Admin Frontend 설계서

14 / 82

│ -------------------------------- │

│ - Material-UI 컴포넌트 렌더링 │

│ - 테마 적용 (Admin 테마) │

│ - 스타일 적용 (CSS-in-JS) │

│ - 화면 완전히 표시 완료 │

└─────────────┬───┘

 ↓

┌───┐

│ Browser (화면 표시) │

│ -------------------------------- │

│ - 사용자가 FAQ 목록 화면 확인 │

│ - 인터랙션 가능 (클릭, 검색, 페이지 변경 등) │

└───┘

2.3.2 예외 처리 Flow

인증 실패 시:

Route Guard (AdminProtectedRoute)

 │

 ├─ isAdminAuthenticated() = false

 │ │

 │ └─ Navigate to /admin/login

 │ (state: { from: '/admin/faqs' } 저장)

 │

 └─ 로그인 성공 후 원래 페이지로 복원

API 에러 시:

Backend API (HTTP Response)

 │

 ├─ Status: 401 Unauthorized

 │ └─ API Client: 토큰 갱신 시도

 │ ├─ 성공 → 원래 요청 재시도

 │ └─ 실패 → 로그인 페이지 리다이렉트

 │

 ├─ Status: 403 Forbidden

 │ └─ useDataFetching: { status: 'error', error: '접근 권한이 없습니다.' }

 │ └─ Page Component: <ErrorAlert error={error} />

 │

 └─ Status: 500 Internal Server Error

 └─ useDataFetching: { status: 'error', error: '서버 오류가 발생했습니다.' }

 └─ Page Component: <ErrorAlert error={error} />

로딩 상태 관리:

useDataFetching Hook

 │

 ├─ status: 'loading'

 │ └─ Page Component: <LoadingSpinner loading={true} />

 │

 ├─ status: 'success' && data.items.length > 0

 │ └─ Page Component: 실제 데이터 UI 렌더링

 │

 ├─ status: 'success' && data.items.length === 0

 │ └─ Page Component: <EmptyState message="데이터가 없습니다." />

 │

 └─ status: 'error'

 └─ Page Component: <ErrorAlert error={error} />

2.3.3 주요 특징

1. Lazy Loading (코드 스플리팅)

IITP DABT Admin Frontend 설계서

15 / 82

관리자 페이지는 lazy() 로 동적 import
초기 로딩 시간 단축
 Suspense 로 로딩 상태 표시

2. 자동 데이터 페칭

 useDataFetching 의 autoFetch: true 로 마운트 시 자동 실행
 dependencies 변경 시 자동 재조회

3. 상태 기반 렌더링

 isLoading , isError , isEmpty 상태에 따라 UI 분기
사용자 경험 최적화

4. 토큰 자동 갱신

API Client에서 401 에러 시 자동 토큰 갱신
사용자 개입 없이 세션 유지

2.4 UI 테마 및 스타일 (Material-UI)
Material-UI v5를 사용하여 User와 Admin 사이트의 독립적인 테마를 구축합니다.

2.4.1 테마 구분 및 색상 체계

파일: src/theme/index.ts , src/theme/mui.ts

Frontend는 User와 Admin 테마를 명확히 분리합니다:

User 테마 - 밝고 친근한 파란색 계열:

user: {

 primary: '#0B5FFF', // 밝은 파란색

 secondary: '#00B8D9', // 청록색

 background: '#F5F7FB', // 연한 회색 배경

 paper: '#FFFFFF', // 흰색 카드

 text: '#0F172A', // 짙은 회색 텍스트

 textSecondary: '#475569', // 중간 회색

}

Admin 테마 - 전문적이고 차분한 네이비 계열:

admin: {

 primary: '#1E3A8A', // 짙은 네이비

 secondary: '#3B82F6', // 밝은 파랑

 background: '#F1F5F9', // 연한 회색 배경

 paper: '#FFFFFF', // 흰색 카드

 text: '#111827', // 짙은 회색 텍스트

 textSecondary: '#6B7280', // 중간 회색

 // Admin 전용 설정

 spacing: 6, // 더 compact (User는 8)

 borderRadius: 8, // 더 작은 radius (User는 10)

 button size: 'small', // 더 작은 버튼 (User는 'medium')

}

Public 페이지 - User 테마 사용:

공개 페이지(/, /faq, /qna, /notice)는 User 테마 적용
일관된 사용자 경험 제공

IITP DABT Admin Frontend 설계서

16 / 82

테마 구분 방법:

// src/theme/index.ts

export const getThemeColors = (theme: 'user' | 'admin'): ThemeColors => {

 return THEME_COLORS[theme];

};

// 사용 예시

const colors = getThemeColors('user'); // User 페이지

const colors = getThemeColors('admin'); // Admin 페이지

Material-UI 테마 생성:

// src/theme/mui.ts

export function createAppTheme(type: 'user' | 'admin', density = 'default') {

 return createTheme({

 ...common, // 공통 설정

 ...(type === 'admin' ? adminTheme : userTheme), // 테마별 설정

 ...densityPreset // 밀도 설정 (선택)

 });

}

2.4.2 테마별 시각적 차이

요소 User 테마 Admin 테마 목적

Primary 색상 #0B5FFF (밝은 파란색) #1E3A8A (짙은 네이비) 브랜드 구분

Spacing 8px 6px Admin은 더 compact

Border Radius 10px 8px Admin은 더 각진 느낌

Button Size medium small Admin은 정보 밀도 높임

TextField Size medium small Admin은 정보 밀도 높임

느낌 밝고 친근한 전문적이고 차분한 UX 차별화

페이지별 테마 적용:

// User 페이지

const colors = getThemeColors('user');

// Admin 페이지

const colors = getThemeColors('admin');

// Public 페이지 (User 테마 사용)

const colors = getThemeColors('user');

2.4.3 테마 스타일 유틸리티

파일: src/theme/index.ts

IITP DABT Admin Frontend 설계서

17 / 82

export const themeStyles = {

 // 페이지 타이틀 스타일 (테마별)

 pageTitle: (theme: 'user' | 'admin') => ({

 color: THEME_COLORS[theme].primary,

 fontWeight: 600,

 borderBottom: `2px solid ${THEME_COLORS[theme].primary}20`

 }),

 // 카드 스타일 (테마별)

 card: (theme: 'user' | 'admin') => ({

 backgroundColor: THEME_COLORS[theme].paper,

 boxShadow: `0 4px 12px ${THEME_COLORS[theme].primary}15`,

 border: `1px solid ${THEME_COLORS[theme].border}`

 }),

 // 버튼 스타일 (테마별)

 primaryButton: (theme: 'user' | 'admin') => ({

 bgcolor: THEME_COLORS[theme].primary,

 color: '#f8f9fa',

 fontWeight: 'bold',

 '&:hover': {

 bgcolor: THEME_COLORS[theme].primary,

 opacity: 0.9,

 }

 }),

};

활용 예시:

// User 페이지

<ThemedButton theme="user" /> // 파란색 버튼

<ThemedCard theme="user" /> // User 스타일 카드

// Admin 페이지

<ThemedButton theme="admin" /> // 네이비 버튼

<ThemedCard theme="admin" /> // Admin 스타일 카드

2.4.4 테마 프리뷰

 /theme-preview 페이지에서 주요 컴포넌트 스타일을 확인할 수 있습니다.

파일: src/pages/ThemePreview.tsx

확인 가능 요소:

버튼 (primary, secondary, outlined, text)
카드 (paper, border)
칩 (status, type)
입력 필드 (textfield, select)
색상 팔레트 (primary, secondary, success, error, warning, info)

IITP DABT Admin Frontend 설계서

18 / 82

2.5 의존성 관계도

┌───┐

│ Pages (화면) │

│ ┌─────────┐ ┌─────────┐ ┌─────────┐ │

│ │ Public │ │ User │ │ Admin │ │

│ └────┬────┘ └────┬────┘ └────┬────┘ │

└───────┼───────────┼─────────────┼───────────────────────┘

 │ │ │

 └───────────┴─────────────┘

 │

 ┌───────────▼───────────────────────────────────┐

 │ Components (재사용) │

 │ ┌────────┐ ┌────────┐ ┌────────┐ │

 │ │ Common │ │ Admin │ │ Layout │ │

 │ └────┬───┘ └───┬────┘ └───┬────┘ │

 └───────┼──────────┼───────────┼────────────────┘

 │ │ │

 ┌───────┴──────────┴───────────┴───────────────┐

 │ Store & Utils (비즈니스 로직) │

 │ ┌────────┐ ┌────────┐ ┌────────┐ │

 │ │ Auth │ │ User │ │ JWT │ │

 │ └────┬───┘ └───┬────┘ └───┬────┘ │

 └───────┼──────────┼───────────┼───────────────┘

 │ │ │

 ┌───────┴──────────┴───────────┴───────────────┐

 │ API Client (데이터) │

 │ ┌────────┐ ┌────────┐ ┌────────┐ │

 │ │ User │ │ Admin │ │ FAQ │ ... │

 │ └────┬───┘ └───┬────┘ └───┬────┘ │

 └───────┼──────────┼───────────┼───────────────┘

 │ │ │

 └──────────┴───────────┘

 │

 ┌──────────▼──────────────────┐

 │ Backend API Server │

 └─────────────────────────────┘

┌───┐

│ @iitp-dabt/common (공유) │

│ ErrorCode, 검증 함수, 공통 타입, API URL │

└───┘

의존성 흐름:

1. Pages → Components → Store/Utils → API Client → Backend
2. 모든 계층 → Common 패키지 (공유 코드)
3. React Router → Pages (라우팅)

IITP DABT Admin Frontend 설계서

19 / 82

3. 디렉토리 구조

3.1 전체 디렉토리 트리

3.1.1 /src/pages - 페이지 컴포넌트

Public 페이지 (로그인 불필요):

src/pages/

 ThemePreview.tsx # UI 테마 프리뷰 페이지

 public/

 OpenApiAbout.tsx # OpenAPI 소개 페이지

 Privacy.tsx # 개인정보 처리방침

 Terms.tsx # 이용약관

User 페이지 (일반 사용자 인증 필요):

src/pages/user/

 Dashboard.tsx # 사용자 대시보드

 Home.tsx # 홈 페이지 (공개 + 선택적 인증)

 Login.tsx # 사용자 로그인

 Register.tsx # 사용자 회원가입

 UserProfile.tsx # 사용자 프로필 관리

 FaqList.tsx # FAQ 목록 (사용자용)

 NoticeList.tsx # 공지사항 목록 (사용자용)

 NoticeDetail.tsx # 공지사항 상세 (사용자용)

 QnaList.tsx # QnA 목록 (사용자용, 공개)

 QnaDetail.tsx # QnA 상세 (사용자용, 공개)

 QnaCreate.tsx # QnA 생성 (인증 필요)

 QnaHistory.tsx # 나의 QnA 히스토리

 OpenApiManagement.tsx # OpenAPI 키 관리 (사용자용)

Admin 페이지 (관리자 인증 필요):

IITP DABT Admin Frontend 설계서

20 / 82

src/pages/admin/

 AdminLogin.tsx # 관리자 로그인

 AdminDashboard.tsx # 관리자 대시보드

 AdminProfile.tsx # 관리자 프로필

 FaqList.tsx # FAQ 관리 (목록)

 FaqCreate.tsx # FAQ 생성

 FaqDetail.tsx # FAQ 상세

 FaqEdit.tsx # FAQ 수정

 QnaManage.tsx # QnA 관리 (목록)

 QnaDetail.tsx # QnA 상세 (관리자용)

 QnaReply.tsx # QnA 답변 작성

 QnaEdit.tsx # QnA 수정

 NoticeManage.tsx # 공지사항 관리 (목록)

 NoticeCreate.tsx # 공지사항 생성

 NoticeDetail.tsx # 공지사항 상세 (관리자용)

 NoticeEdit.tsx # 공지사항 수정

 UserManagement.tsx # 사용자 관리 (목록)

 UserCreate.tsx # 사용자 생성

 UserDetail.tsx # 사용자 상세

 UserEdit.tsx # 사용자 수정

 OperatorManagement.tsx # 운영자 관리 (목록, S-ADMIN 전용)

 OperatorCreate.tsx # 운영자 생성 (S-ADMIN 전용)

 OperatorDetail.tsx # 운영자 상세 (S-ADMIN 전용)

 OperatorEdit.tsx # 운영자 수정 (S-ADMIN 전용)

 OpenApiManage.tsx # OpenAPI 클라이언트 관리

 OpenApiDetail.tsx # OpenAPI 클라이언트 상세

 OpenApiEdit.tsx # OpenAPI 클라이언트 수정

 OpenApiRequests.tsx # OpenAPI 키 승인 요청 목록

 OpenApiRequestDetail.tsx # OpenAPI 키 승인 요청 상세

 CodeManagement.tsx # 코드 관리 (목록, S-ADMIN 전용)

 CodeGroupDetail.tsx # 코드 그룹 상세 (S-ADMIN 전용)

 CodeCreate.tsx # 코드 생성 (S-ADMIN 전용)

 CodeDetail.tsx # 코드 상세 (S-ADMIN 전용)

3.1.2 /src/components - 공통 컴포넌트

레이아웃 컴포넌트:

src/components/

 Layout.tsx # 전체 레이아웃 (Header + Content + Footer)

 AppBar.tsx # 사용자 상단 앱바

 AppBarCommon.tsx # 공통 앱바 (로직 공유)

 AdminMenuBar.tsx # 관리자 메뉴바

 Footer.tsx # 푸터

 LoginForm.tsx # 로그인 폼 (공통)

 ProfileForm.tsx # 프로필 폼 (공통)

 ProtectedRoute.tsx # 권한 체크 Guard (PrivateRoute, AdminProtectedRoute)

 LoadingSpinner.tsx # 로딩 스피너

 ErrorAlert.tsx # 에러 알림

 CommonDialog.tsx # 공통 다이얼로그

 CommonToast.tsx # 공통 토스트

 ToastProvider.tsx # 토스트 프로바이더

Admin 전용 컴포넌트:

IITP DABT Admin Frontend 설계서

21 / 82

src/components/admin/

 AdminPageHeader.tsx # 관리자 페이지 헤더

 SideNav.tsx # 관리자 사이드 네비게이션

Common UI 컴포넌트:

src/components/common/

 DataTable.tsx # 데이터 테이블

 TableListBody.tsx # 테이블 리스트 본문

 CardListBody.tsx # 카드 리스트 본문

 ListItemCard.tsx # 리스트 아이템 카드

 EmptyState.tsx # 빈 상태 표시

 PageHeader.tsx # 페이지 헤더

 PageTitle.tsx # 페이지 제목

 ListHeader.tsx # 리스트 헤더

 ListScaffold.tsx # 리스트 스캐폴드

 ListTotal.tsx # 리스트 총 개수

 SelectField.tsx # 셀렉트 필드

 ThemedButton.tsx # 테마 버튼

 ByteLimitHelper.tsx # 바이트 제한 헬퍼

 StatusChip.tsx # 상태 칩

 QnaTypeChip.tsx # QnA 타입 칩

 Pagination.tsx # 페이지네이션

 ThemedCard.tsx # 테마 카드

 ExtendKeyDialog.tsx # API 키 연장 다이얼로그

3.1.3 /src/api - API 클라이언트

src/api/

 api.ts # 공통 API 요청 함수 (apiFetch, publicApiFetch)

 index.ts # API 모듈 통합 Export

 user.ts # 사용자 인증 및 관리 API

 admin.ts # 관리자 인증 API

 account.ts # 관리자 계정 관리 API

 common.ts # 공통 API (JWT 설정 등)

 commonCode.ts # 공통 코드 관리 API

 faq.ts # FAQ 관리 API

 qna.ts # QnA 관리 API

 notice.ts # 공지사항 관리 API

 openApi.ts # OpenAPI 키 관리 API

3.1.4 /src/store - 상태 관리

src/store/

 auth.ts # 인증 상태 관리 (토큰 저장/조회/갱신)

 user.ts # 사용자 정보 관리 (User/Admin 정보 분리)

IITP DABT Admin Frontend 설계서

22 / 82

3.1.5 /src/utils - 유틸리티 함수

src/utils/

 auth.ts # 권한 체크 함수 (isSAdmin, hasContentEditPermission 등)

 jwt.ts # JWT 토큰 처리 (검증, 만료 체크, 갱신 판단)

 date.ts # 날짜 포맷팅 유틸리티

 openApiStatus.ts # OpenAPI 상태 관리 유틸리티

 apiResponseHandler.ts # API 응답 핸들러

3.1.6 /src/routes - 라우팅 설정

src/routes/

 index.ts # 라우트 정의 (ROUTES, ROUTE_META, RouteUtils)

 guards/

 PublicRoute.tsx # 공개 라우트 가드 (향후 확장)

3.1.7 /src/theme - UI 테마

src/theme/

 index.ts # 테마 색상 정의 (User/Admin 분리), themeStyles 유틸리티

 mui.ts # Material-UI 테마 생성 (createAppTheme)

3.1.8 /src/constants - 상수 정의

src/constants/

 spacing.ts # 페이지 간격 상수 (SPACING, PAGE_SPACING)

 pagination.ts # 페이지네이션 기본값 (DEFAULT_PAGE, DEFAULT_LIMIT)

 noticeTypes.ts # 공지사항 타입 상수

3.1.9 /src/hooks - Custom React Hooks

src/hooks/

 useDataFetching.ts # 데이터 페칭 공통 훅 (로딩, 에러, 빈 상태 관리)

 usePasswordValidation.ts # 비밀번호 검증 훅

 useQuerySync.ts # URL 쿼리 동기화 훅 (검색, 페이징)

 usePagination.ts # 페이지네이션 상태 관리 훅

 useInputWithTrim.ts # 입력 값 trim 처리 훅

 useErrorHandler.ts # 에러 핸들링 훅

 useCommonCode.ts # 공통 코드 조회 훅

3.1.10 /src/types - 타입 정의

src/types/

 api.ts # API 요청/응답 타입 정의

 errorCodes.ts # ErrorCode 타입 (Common 패키지 재정의)

3.1.11 기타 파일

src/

 App.tsx # 최상위 App 컴포넌트 (라우트 설정)

 main.tsx # 엔트리 포인트 (ReactDOM.render)

 config.ts # 환경 변수 설정 (API_BASE_URL 등)

 vite-env.d.ts # Vite 환경 변수 타입 정의

 App.css # 전역 CSS

 index.css # 루트 CSS

 assets/

 react.svg # React 로고

IITP DABT Admin Frontend 설계서

23 / 82

3.1.12 /public - 정적 자산

public/

 iitp_cms_logo_img_1.png # IITP 로고 (메인)

 iitp_cms_logo_img_2.png # IITP 로고 (서브)

 vite.svg # Vite 로고

 index.html # HTML 템플릿

역할: 빌드 시 dist/ 로 복사되는 정적 파일

3.2 빌드 및 설정 파일

3.2.1 vite.config.ts - Vite 빌드 설정

import { defineConfig, loadEnv } from 'vite'

import react from '@vitejs/plugin-react'

export default defineConfig(({ mode }) => {

 const env = loadEnv(mode, process.cwd(), '')

 return {

 plugins: [react()],

 base: env.VITE_BASE || '/',

 server: {

 port: Number(env.VITE_PORT) || 5173,

 },

 build: {

 outDir: 'dist',

 },

 }

})

주요 설정:

plugins: @vitejs/plugin-react 사용
base: 서브 경로 배포 지원 (VITE_BASE 환경 변수)
server.port: 개발 서버 포트 (기본 5173)
build.outDir: 빌드 출력 디렉토리 (dist/)

3.2.2 tsconfig.json - TypeScript 설정

{

 "files": [],

 "references": [

 { "path": "../packages/common" },

 { "path": "./tsconfig.app.json" },

 { "path": "./tsconfig.node.json" }

],

 "compilerOptions": {

 "baseUrl": ".",

 "paths": {

 "packages/common/*": ["../packages/common/*"]

 }

 }

}

주요 설정:

references: Project References로 Common 패키지 참조
paths: @iitp-dabt/common 경로 매핑

IITP DABT Admin Frontend 설계서

24 / 82

3.2.3 package.json - 의존성 및 스크립트

주요 스크립트:

{

 "scripts": {

 "dev": "vite",

 "build": "rimraf dist && tsc -b && vite build && node scripts/build-info.js",

 "build:clean": "rimraf dist && tsc -b && vite build && node scripts/build-info.js",

 "preview": "vite preview",

 "prebuild": "node scripts/build-info.js"

 }

}

dev: 개발 서버 실행
build: 프로덕션 빌드 (빌드 정보 생성 포함)
build:clean: 클린 빌드
preview: 빌드 결과물 미리보기

3.2.4 scripts/ - 빌드 스크립트

scripts/

 build-info.js # 빌드 정보 생성 (version, buildDate)

 build.sh # 빌드 스크립트 (Linux/Mac)

 setup.sh # 초기 설정 스크립트

scripts/build-info.js:

// 빌드 정보 생성 스크립트

const buildInfo = {

 version: pkg.version,

 buildDate: getLocalDateTimeString()

};

fs.writeFileSync(path.join(distPath, 'build-info.json'),

 JSON.stringify(buildInfo, null, 2));

역할: 빌드 버전 및 빌드 시각을 dist/build-info.json 으로 출력

3.2.5 루트 설정 파일

fe/

 .env # 환경 변수 설정 (로컬, git ignore)

 .env.sample # 환경 변수 샘플 파일

 package.json # 의존성 및 스크립트

 package-lock.json # 의존성 잠금 파일

 vite.config.ts # Vite 빌드 설정

 tsconfig.json # TypeScript 루트 설정 (Project References)

 tsconfig.app.json # App TypeScript 설정

 tsconfig.node.json # Node TypeScript 설정 (Vite 빌드 스크립트용)

 eslint.config.js # ESLint 설정

 index.html # HTML 엔트리 포인트

 README.md # 프로젝트 설명

3.2.6 public/

public/

 iitp_cms_logo_img_1.png # IITP 로고 (메인)

 iitp_cms_logo_img_2.png # IITP 로고 (서브)

 vite.svg # Vite 로고

 index.html # HTML 템플릿 (빌드 시 사용)

IITP DABT Admin Frontend 설계서

25 / 82

역할: 빌드 시 dist/ 로 복사되는 정적 파일 (로고, 아이콘 등)

IITP DABT Admin Frontend 설계서

26 / 82

4. 인증 및 권한 체계
Frontend는 JWT 기반 인증과 Role-Based 권한 체크를 합니다.

중요: Frontend의 인증 및 권한 체크는 UX이며, 실제 보안은 Backend에서 담당합니다.

4.1 JWT 토큰 관리

4.1.1 토큰 검증 로직

파일: src/utils/jwt.ts

주요 함수:

import { jwtDecode } from 'jwt-decode';

// 토큰 형식 검증

export function isValidTokenFormat(token: string): boolean {

 if (!token || typeof token !== 'string') return false;

 const parts = token.split('.');

 return parts.length === 3; // header.payload.signature

}

// 토큰 정보 추출

export function extractTokenInfo(token: string): TokenInfo | null {

 try {

 const decoded = jwtDecode(token) as any;

 if (!decoded || !decoded.exp || !decoded.iat) return null;

 return {

 exp: decoded.exp,

 iat: decoded.iat,

 expiresIn: JWT_CONFIG.accessTokenExpiresIn,

 };

 } catch {

 return null;

 }

}

IITP DABT Admin Frontend 설계서

27 / 82

4.1.2 토큰 만료 확인

// 토큰 만료 여부 확인

export function isTokenExpired(token: string): boolean {

 try {

 const decoded = jwtDecode(token) as any;

 if (!decoded || !decoded.exp) return true;

 const currentTime = Math.floor(Date.now() / 1000);

 return decoded.exp < currentTime;

 } catch {

 return true;

 }

}

// 토큰 만료까지 남은 시간 (초)

export function getTokenTimeRemaining(token: string): number {

 try {

 const decoded = jwtDecode(token) as any;

 if (!decoded || !decoded.exp) return -1;

 const currentTime = Math.floor(Date.now() / 1000);

 return decoded.exp - currentTime;

 } catch {

 return -1;

 }

}

4.1.3 토큰 갱신 판단 (만료 5분 전)

// 토큰 갱신이 필요한지 확인 (기본값: 만료 5분 전)

export function shouldRefreshToken(

 token: string,

 bufferSeconds: number = 300 // 5분

): boolean {

 const timeRemaining = getTokenTimeRemaining(token);

 return timeRemaining > 0 && timeRemaining <= bufferSeconds;

}

갱신 판단 로직:

만료까지 5분 이하 남았을 때 갱신 필요
이미 만료된 경우도 갱신 시도
 bufferSeconds 파라미터로 갱신 시점 조정 가능

4.2 인증 상태 관리

4.2.1 토큰 저장/조회

파일: src/store/auth.ts

IITP DABT Admin Frontend 설계서

28 / 82

// User/Admin 독립적 저장을 위한 prefix 상수

const USER_PREFIX = 'user_';

const ADMIN_PREFIX = 'admin_';

// 현재 활성 사용자 타입에 맞는 prefix 자동 반환

function getCurrentPrefix(): string {

 const userType = getUserType();

 return userType === 'A' ? ADMIN_PREFIX : USER_PREFIX;

}

// 토큰 저장

export function saveTokens(accessToken: string, refreshToken: string) {

 if (!isValidTokenFormat(accessToken) || !isValidTokenFormat(refreshToken)) {

 console.warn('Invalid token format detected');

 return;

 }

 const prefix = getCurrentPrefix();

 localStorage.setItem(prefix + 'accessToken', accessToken);

 localStorage.setItem(prefix + 'refreshToken', refreshToken);

}

// Access Token 가져오기

export function getAccessToken(): string | null {

 const prefix = getCurrentPrefix();

 const token = localStorage.setItem(prefix + 'accessToken');

 if (!token || !isValidTokenFormat(token)) return null;

 return token;

}

저장 위치: LocalStorage

User 토큰: user_accessToken , user_refreshToken
Admin 토큰: admin_accessToken , admin_refreshToken

4.2.2 토큰 만료 확인

// Access Token 만료 여부

export function isAccessTokenExpired(): boolean {

 const token = getAccessToken();

 return !token || isTokenExpired(token);

}

// Refresh Token 만료 여부

export function isRefreshTokenExpired(): boolean {

 const token = getRefreshToken();

 return !token || isTokenExpired(token);

}

// Access Token 갱신 필요 여부

export function shouldRefreshAccessToken(): boolean {

 const token = getAccessToken();

 return token ? shouldRefreshToken(token) : true;

}

4.2.3 토큰 갱신 조건 및 Flow

갱신 조건:

1. Access Token이 만료 5분 전일 때
2. Access Token이 만료되었고 Refresh Token이 유효할 때

갱신 Flow:

IITP DABT Admin Frontend 설계서

29 / 82

// 토큰 상태 확인 및 갱신 (API 요청 전 호출)

export async function ensureValidToken(): Promise<string | null> {

 validateAndCleanTokens(); // 유효성 검사 및 정리

 const accessToken = getAccessToken();

 const refreshToken = getRefreshToken();

 // 토큰이 없으면 null 반환

 if (!accessToken) {

 // Access 없음 → Refresh로 갱신 시도

 if (refreshToken && !isTokenExpired(refreshToken)) {

 return await tryRefreshToken(refreshToken);

 }

 return null;

 }

 // Access Token이 유효하고 갱신 필요 없으면 그대로 사용

 if (!isTokenExpired(accessToken) && !shouldRefreshToken(accessToken)) {

 return accessToken;

 }

 // Access 만료 또는 만료 임박 → Refresh로 갱신 시도

 if (refreshToken && !isTokenExpired(refreshToken)) {

 return await tryRefreshToken(refreshToken);

 }

 return null; // 갱신 실패

}

// Refresh Token으로 Access/Refresh 재발급 시도

async function tryRefreshToken(refreshToken: string): Promise<string | null> {

 try {

 const userType = getUserType();

 const url = userType === 'A'

 ? FULL_API_URLS.AUTH.ADMIN.REFRESH

 : FULL_API_URLS.AUTH.USER.REFRESH;

 const res = await fetch(`${API_BASE_URL}${url}`, {

 method: 'POST',

 headers: { 'Content-Type': 'application/json' },

 body: JSON.stringify({ refreshToken })

 });

 if (!res.ok) throw new Error(`Refresh failed: ${res.status}`);

 const data = await res.json();

 const newAccess = data?.data?.token || data?.token;

 const newRefresh = data?.data?.refreshToken || data?.refreshToken;

 if (newAccess && newRefresh &&

 isValidTokenFormat(newAccess) &&

 isValidTokenFormat(newRefresh)) {

 saveTokens(newAccess, newRefresh);

 return newAccess;

 }

 throw new Error('Invalid refresh response');

 } catch (error) {

 console.error('Token refresh failed:', error);

 removeTokens();

 clearLoginInfo();

 return null;

 }

}

IITP DABT Admin Frontend 설계서

30 / 82

Flow 다이어그램:

API 요청 전

 │

 ▼

ensureValidToken() 호출

 │

 ├─ Access Token 없음?

 │ └─ Refresh Token 있고 유효? → 갱신 시도

 │ ├─ 성공 → 새 Access Token 반환

 │ └─ 실패 → null 반환 (로그인 필요)

 │

 ├─ Access Token 있고 유효? (만료 5분 초과)

 │ └─ 그대로 사용

 │

 └─ Access Token 만료 또는 만료 임박? (5분 이내)

 └─ Refresh Token으로 갱신 시도

 ├─ 성공 → 새 Access Token 반환

 └─ 실패 → null 반환 (로그인 필요)

4.2.4 인증 상태 확인

// 기본 인증 상태 확인

export function isAuthenticated(): boolean {

 const accessToken = getAccessToken();

 const refreshToken = getRefreshToken();

 return (!!accessToken && !isTokenExpired(accessToken)) ||

 (!!refreshToken && !isTokenExpired(refreshToken));

}

// 일반 사용자 인증 상태 확인

export function isUserAuthenticated(): boolean {

 const userAccessToken = localStorage.getItem('user_accessToken');

 const userRefreshToken = localStorage.getItem('user_refreshToken');

 const hasValidUserToken =

 (userAccessToken && !isTokenExpired(userAccessToken)) ||

 (userRefreshToken && !isTokenExpired(userRefreshToken));

 const userInfo = localStorage.getItem('user_userInfo');

 return !!(hasValidUserToken && userInfo);

}

// 관리자 인증 상태 확인

export function isAdminAuthenticated(): boolean {

 const adminAccessToken = localStorage.getItem('admin_accessToken');

 const adminRefreshToken = localStorage.getItem('admin_refreshToken');

 const hasValidAdminToken =

 (adminAccessToken && !isTokenExpired(adminAccessToken)) ||

 (adminRefreshToken && !isTokenExpired(adminRefreshToken));

 const adminInfo = localStorage.getItem('admin_userInfo');

 return !!(hasValidAdminToken && adminInfo);

}

IITP DABT Admin Frontend 설계서

31 / 82

4.3 사용자 정보 관리

4.3.1 사용자 정보 저장/조회

파일: src/store/user.ts

interface UserInfo {

 userId: number;

 email: string;

 name: string;

 userType: 'U' | 'A';

 role?: string; // 관리자의 경우 role 정보

 roleName?: string; // 관리자의 경우 role 이름

}

// 사용자 정보 저장

export function saveUserInfo(userInfo: UserInfo) {

 const prefix = getCurrentPrefix(userInfo.userType);

 localStorage.setItem(prefix + 'userInfo', JSON.stringify(userInfo));

}

// 사용자 정보 가져오기

export function getUserInfo(): UserInfo | null {

 const prefix = getCurrentPrefix();

 const userInfoStr = localStorage.getItem(prefix + 'userInfo');

 if (!userInfoStr) return null;

 try {

 return JSON.parse(userInfoStr);

 } catch (error) {

 console.error('Failed to parse user info:', error);

 return null;

 }

}

IITP DABT Admin Frontend 설계서

32 / 82

4.3.2 Admin Role 조회

// 권한 체크용 Admin Role 반환 (userInfo.role 사용)

export function getAdminRole(): string {

 const adminInfoStr = localStorage.getItem('admin_userInfo');

 if (!adminInfoStr) return '';

 try {

 const adminInfo = JSON.parse(adminInfoStr);

 return adminInfo?.role || '';

 } catch (error) {

 console.error('Failed to parse admin info:', error);

 return '';

 }

}

// 화면 표시용 Admin Role Name 반환

export function getAdminRoleName(): string {

 const adminInfoStr = localStorage.getItem('admin_userInfo');

 if (!adminInfoStr) return '관리자';

 try {

 const adminInfo = JSON.parse(adminInfoStr);

 return adminInfo?.roleName || '관리자';

 } catch (error) {

 console.error('Failed to parse admin info:', error);

 return '관리자';

 }

}

4.3.3 로그인 정보 저장/삭제

// 로그인 시 사용자 정보와 토큰을 함께 저장

export function saveLoginInfo(

 userInfo: UserInfo,

 accessToken: string,

 refreshToken: string

) {

 saveUserInfo(userInfo);

 saveTokens(accessToken, refreshToken);

}

// 현재 활성 사용자 타입의 로그인 정보만 제거

export function clearLoginInfo() {

 removeUserInfo(); // 현재 타입의 사용자 정보만 제거

 removeTokens(); // 현재 타입의 토큰만 제거

}

// 특정 사용자 타입의 로그인 정보만 제거

export function clearLoginInfoByType(userType: 'U' | 'A') {

 removeUserInfoByType(userType);

 removeTokensByType(userType);

}

// 모든 타입의 로그인 정보 완전 제거

export function clearAllLoginInfo() {

 removeAllUserInfo();

 removeAllTokens();

}

IITP DABT Admin Frontend 설계서

33 / 82

4.4 User/Admin 독립 세션 관리 (핵심 로직)
Frontend는 User와 Admin의 독립적인 동시 로그인을 지원합니다.

4.4.1 LocalStorage prefix 분리 (user_ , admin_)

저장 구조:

LocalStorage:

 user_accessToken # 일반 사용자 Access Token

 user_refreshToken # 일반 사용자 Refresh Token

 user_userInfo # 일반 사용자 정보

 admin_accessToken # 관리자 Access Token

 admin_refreshToken # 관리자 Refresh Token

 admin_userInfo # 관리자 정보

장점:

독립적 세션: User와 Admin 세션이 서로 영향을 주지 않음
동시 로그인: 하나의 브라우저에서 User와 Admin 동시 로그인 가능
세션 전환: 로그아웃 없이 User ↔ Admin 전환 가능

4.4.2 동시 로그인 지원 메커니즘

현재 활성 사용자 타입 자동 판단:

// 현재 활성 사용자 타입 자동 판단 (Admin 우선)

export function getUserType(): 'U' | 'A' | null {

 // Admin 정보 먼저 확인 (우선순위)

 const adminInfo = localStorage.getItem('admin_userInfo');

 if (adminInfo) {

 try {

 const parsed = JSON.parse(adminInfo);

 if (parsed && parsed.userType === 'A') return 'A';

 } catch {}

 }

 // User 정보 확인

 const userInfo = localStorage.getItem('user_userInfo');

 if (userInfo) {

 try {

 const parsed = JSON.parse(userInfo);

 if (parsed && parsed.userType === 'U') return 'U';

 } catch {}

 }

 return null; // 둘 다 없으면 null

}

우선순위: Admin > User

Admin으로 로그인되어 있으면 Admin 세션 사용
Admin이 없고 User만 있으면 User 세션 사용
둘 다 없으면 null (로그인 필요)

4.4.3 자동 사용자 타입 판단 (Admin 우선)

prefix 자동 결정:

IITP DABT Admin Frontend 설계서

34 / 82

function getCurrentPrefix(): string {

 const userType = getUserType();

 return userType === 'A' ? ADMIN_PREFIX : USER_PREFIX;

}

활용:

 saveTokens() : 현재 활성 타입에 맞게 토큰 저장
 getAccessToken() : 현재 활성 타입의 토큰 조회
 saveUserInfo() : 현재 활성 타입의 사용자 정보 저장

4.4.4 세션 전환 Flow

시나리오 1: User → Admin 전환

1. User로 로그인 상태

 - user_accessToken, user_userInfo 존재

2. Admin 로그인 (/admin/login)

 - admin_accessToken, admin_userInfo 생성

3. getUserType() 호출

 - Admin 우선 → 'A' 반환

4. 이후 모든 API 요청은 admin_ prefix 사용

 - User 세션은 유지됨 (로그아웃 불필요)

시나리오 2: Admin → User 전환

1. Admin으로 로그인 상태

 - admin_accessToken, admin_adminInfo 존재

2. Admin 로그아웃 (clearLoginInfoByType('A'))

 - admin_ prefix 데이터 삭제

3. getUserType() 호출

 - Admin 없음 → User 확인 → 'U' 반환

4. User 세션으로 자동 전환

시나리오 3: 완전 로그아웃

1. User와 Admin 모두 로그인 상태

2. 완전 로그아웃 (clearAllLoginInfo())

 - user_ prefix 데이터 삭제

 - admin_ prefix 데이터 삭제

3. getUserType() 호출

 - null 반환 (로그인 필요)

4.4.5 브라우저 저장 데이터 종합

Frontend는 LocalStorage와 SessionStorage를 사용하여 인증 및 사용자 정보를 저장합니다.

LocalStorage (영구 저장):

키 이름
데이터

형식
용도 예시 값

 user_accessToken JWT
문자열

일반

사용자

 eyJhbGciOiJIUzI1NiIs...

IITP DABT Admin Frontend 설계서

35 / 82

키 이름
데이터

형식
용도 예시 값

Access
Token

 user_refreshToken
JWT
문자열

일반

사용자

Refresh
Token

 eyJhbGciOiJIUzI1NiIs...

 user_userInfo
JSON
문자열

일반

사용자

정보

 {"userId":1,"email":"user@example.com","name":"홍길동","userType":"U"}

 admin_accessToken
JWT
문자열

관리자

Access
Token

 eyJhbGciOiJIUzI1NiIs...

 admin_refreshToken
JWT
문자열

관리자

Refresh
Token

 eyJhbGciOiJIUzI1NiIs...

 admin_userInfo
JSON
문자열

관리자

정보

(role
포함)

 {"userId":1,"email":"admin@example.com","name":"관리자","userType":"A","role":"S-ADMIN","roleName":"Su

SessionStorage (탭 닫으면 삭제):

키 이름 데이터 형식 용도

 returnTo 문자열 (URL 경로) 인증 실패 시 원래 페이지 경로 저장 (로그인 후 자동 복원)

저장 데이터 특징:

User와 Admin 완전 분리: prefix로 구분하여 독립 세션 지원
로그아웃 시 선택적 삭제:

 clearLoginInfoByType('U') → user_ prefix만 삭제
 clearLoginInfoByType('A') → admin_ prefix만 삭제
 clearAllLoginInfo() → 모든 데이터 삭제

SessionStorage 활용: 페이지 복원을 위한 임시 데이터 (보안 강화)
자동 정리: 유효하지 않은 토큰은 자동 제거 (validateAndCleanTokens)

보안 고려사항:

LocalStorage는 XSS 공격에 취약 (JavaScript로 접근 가능)
토큰 형식 검증 (isValidTokenFormat) 적용
토큰 만료 체크 (isTokenExpired) 적용
HTTPS 통신 필수 (프로덕션)

4.5 권한 체크 유틸리티

4.5.1 역할 기반 권한 체크 함수 (8개)

파일: src/utils/auth.ts

IITP DABT Admin Frontend 설계서

36 / 82

import { CODE_SYS_ADMIN_ROLES } from '@iitp-dabt/common';

// 1. S-Admin 권한 확인 (최고 권한)

export function isSAdmin(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN;

}

// 2. 일반 Admin 권한 확인 (ADMIN, EDITOR, VIEWER 포함)

export function isAdmin(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN

 || adminRole === CODE_SYS_ADMIN_ROLES.ADMIN

 || adminRole === CODE_SYS_ADMIN_ROLES.EDITOR

 || adminRole === CODE_SYS_ADMIN_ROLES.VIEWER;

}

// 3. 콘텐츠 편집 권한 확인 (S-ADMIN, ADMIN, EDITOR)

export function hasContentEditPermission(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN

 || adminRole === CODE_SYS_ADMIN_ROLES.ADMIN

 || adminRole === CODE_SYS_ADMIN_ROLES.EDITOR;

}

// 4. 읽기 권한 확인 (모든 관리자)

export function hasReadPermission(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN

 || adminRole === CODE_SYS_ADMIN_ROLES.ADMIN

 || adminRole === CODE_SYS_ADMIN_ROLES.EDITOR

 || adminRole === CODE_SYS_ADMIN_ROLES.VIEWER;

}

// 5. 운영자 계정 관리 권한 확인 (S-ADMIN만)

export function hasAccountManagementPermission(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN;

}

// 6. 사용자 계정 조회 권한 확인 (모든 관리자)

export function hasUserAccountReadPermission(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN

 || adminRole === CODE_SYS_ADMIN_ROLES.ADMIN

 || adminRole === CODE_SYS_ADMIN_ROLES.EDITOR

 || adminRole === CODE_SYS_ADMIN_ROLES.VIEWER;

}

// 7. 사용자 계정 편집 권한 확인 (S-ADMIN, ADMIN만)

export function hasUserAccountEditPermission(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN

 || adminRole === CODE_SYS_ADMIN_ROLES.ADMIN;

}

// 8. 시스템 설정 권한 확인 (S-ADMIN만)

export function hasSystemConfigPermission(adminRole: string | null): boolean {

 return adminRole === CODE_SYS_ADMIN_ROLES.SUPER_ADMIN;

}

권한 매트릭스:

기능 VIEWER EDITOR ADMIN S-ADMIN

콘텐츠 조회 (FAQ, QnA, Notice) O O O O

콘텐츠 편집 (생성/수정/삭제) X O O O

사용자 계정 조회 O O O O

사용자 계정 편집 X X O O

IITP DABT Admin Frontend 설계서

37 / 82

기능 VIEWER EDITOR ADMIN S-ADMIN

운영자 계정 관리 X X X O

코드 관리 X X X O

시스템 설정 X X X O

4.5.2 메뉴 접근 권한 체크

export function hasMenuAccess(adminRole: string | null, menuName: string): boolean {

 switch (menuName) {

 case 'dashboard':

 case 'openapi':

 case 'qna':

 case 'faq':

 case 'notice':

 case 'user-management':

 return hasReadPermission(adminRole);

 case 'operator-management':

 case 'code-management':

 return hasAccountManagementPermission(adminRole);

 default:

 return hasReadPermission(adminRole);

 }

}

활용: 사이드 네비게이션 메뉴 표시/숨김 제어

4.5.3 버튼/액션 권한 체크

export function hasActionPermission(adminRole: string | null, actionType: string): boolean {

 switch (actionType) {

 case 'create':

 case 'update':

 case 'delete':

 return hasContentEditPermission(adminRole);

 case 'user-create':

 case 'user-update':

 case 'user-delete':

 return hasUserAccountEditPermission(adminRole);

 case 'operator-create':

 case 'operator-update':

 case 'operator-delete':

 return hasAccountManagementPermission(adminRole);

 case 'code-create':

 case 'code-update':

 case 'code-delete':

 return hasAccountManagementPermission(adminRole);

 default:

 return hasReadPermission(adminRole);

 }

}

활용: 버튼 활성화/비활성화, 경고 메시지 표시

IITP DABT Admin Frontend 설계서

38 / 82

4.6 라우트 가드

4.6.1 PrivateRoute - 일반 사용자 인증 체크

파일: src/components/ProtectedRoute.tsx

import { Navigate, useLocation } from 'react-router-dom';

import { useEffect } from 'react';

import { validateAndCleanTokens, isUserAuthenticated } from '../store/auth';

import { ROUTES } from '../routes';

// 인증 보호 라우트 컴포넌트 (일반 사용자용)

export function PrivateRoute({ children }: { children: React.ReactNode }) {

 const isLoggedIn = isUserAuthenticated();

 const location = useLocation();

 // 토큰 유효성 검사 및 정리

 useEffect(() => {

 validateAndCleanTokens();

 }, []);

 if (!isLoggedIn) {

 return <Navigate to={ROUTES.PUBLIC.LOGIN} state={{ from: location }} replace />;

 }

 return <>{children}</>;

}

동작:

1. isUserAuthenticated() 호출로 User 토큰 유효성 확인
2. 유효하지 않으면 /login 으로 리다이렉트
3. location.state 에 원래 페이지 경로 저장 (로그인 후 복원)

적용 페이지:

 /dashbd - 사용자 대시보드
 /profile - 프로필 관리
 /user/qna/create - QnA 생성
 /user/openapi - OpenAPI 키 관리

4.6.2 AdminProtectedRoute - 관리자 인증 체크

// 관리자 보호 라우트 컴포넌트

export function AdminProtectedRoute({ children }: { children: React.ReactNode }) {

 const isLoggedIn = isAdminAuthenticated();

 const location = useLocation();

 // 토큰 유효성 검사 및 정리

 useEffect(() => {

 validateAndCleanTokens();

 }, []);

 if (!isLoggedIn) {

 return <Navigate to={ROUTES.ADMIN.LOGIN} state={{ from: location }} replace />;

 }

 return <>{children}</>;

}

동작:

1. isAdminAuthenticated() 호출로 Admin 토큰 유효성 확인

IITP DABT Admin Frontend 설계서

39 / 82

2. 유효하지 않으면 /admin/login 으로 리다이렉트
3. location.state 에 원래 페이지 경로 저장

적용 페이지:

 /admin/dashbd - 관리자 대시보드
 /admin/faqs/* - FAQ 관리
 /admin/qnas/* - QnA 관리
 /admin/notices/* - 공지사항 관리
 /admin/users/* - 사용자 관리
 /admin/operators/* - 운영자 관리
 /admin/openapi/* - OpenAPI 관리
 /admin/code/* - 코드 관리

4.6.3 인증 실패 시 리다이렉트

Flow:

사용자가 보호된 페이지 접근

 │

 ▼

PrivateRoute / AdminProtectedRoute

 │

 ├─ 인증 성공?

 │ └─ 페이지 렌더링

 │

 └─ 인증 실패?

 └─ 로그인 페이지로 리다이렉트

 ├─ state: { from: location }

 └─ 로그인 성공 후 원래 페이지로 복원

로그인 후 복원 예시:

// Login.tsx

const location = useLocation();

const from = location.state?.from?.pathname || '/dashbd';

const handleLoginSuccess = () => {

 navigate(from, { replace: true });

};

IITP DABT Admin Frontend 설계서

40 / 82

5. API 클라이언트

5.1 API 클라이언트 구조 및 공통 로직
Frontend의 모든 Backend API 통신은 src/api/ 디렉토리의 모듈을 통해 이루어집니다.

주요 특징:

통합 요청 함수: apiFetch() (인증 필요), publicApiFetch() (공개)
자동 토큰 관리: 토큰 갱신, 만료 체크
ErrorCode 기반 처리: 사용자 친화적 메시지 변환
타임아웃 및 재시도: 네트워크 오류 처리

5.1.1 apiFetch() vs publicApiFetch() 차이

항목 apiFetch() publicApiFetch()

토큰 필수 여부 필수 (없으면 null 반환) 선택 (없어도 진행)

토큰 갱신 요청 전 자동 갱신 401 에러 시 재시도

사용 페이지 User/Admin 인증 페이지 공개 페이지 (FAQ, QnA, Notice)

Authorization 헤더 항상 포함 토큰 있을 때만 포함

5.1.2 토큰 자동 갱신 (401 에러 시)

 apiFetch() 갱신 Flow:

API 요청 전 → ensureValidToken() 호출

 ├─ Access Token 유효 (만료 5분 초과)

 │ └─ 그대로 사용

 └─ Access Token 만료 또는 만료 임박 (5분 이내)

 └─ Refresh Token으로 갱신 시도

 ├─ 성공 → 새 Access Token 사용

 └─ 실패 → null 반환 (API 요청 중단)

 publicApiFetch() 갱신 Flow:

API 요청 → 401 에러 발생 시

 └─ Refresh Token으로 갱신 시도

 ├─ 성공 → 동일 요청 재시도 (1회만)

 └─ 실패 → 에러 응답 반환

5.1.3 정상 응답 처리 (ApiResponse<T> 구조)

타입 정의: src/types/api.ts

export interface ApiResponse<T = any> {

 success: boolean;

 data?: T;

 errorCode?: number;

 errorMessage?: string;

 // FE 전용 확장 필드

 showPopup?: boolean; // 팝업 표시 필요 여부

 redirectTo?: string; // 리다이렉트 URL

 autoLogout?: boolean; // 자동 로그아웃 필요 여부

 details?: any; // 추가 상세 정보

}

IITP DABT Admin Frontend 설계서

41 / 82

5.1.4 에러 응답 처리 (ErrorCode → 사용자 친화적 메시지)

ErrorCode 기반 메시지 변환 (src/api/api.ts):

ErrorCode 사용자 메시지

 UNAUTHORIZED (40101) 인증이 필요합니다. 다시 로그인해주세요.

 TOKEN_EXPIRED (40102) 로그인 세션이 만료되었습니다. 다시 로그인해주세요.

 INVALID_TOKEN (40103) 유효하지 않은 인증 정보입니다. 다시 로그인해주세요.

 ACCESS_DENIED (40301) 접근 권한이 없습니다.

 USER_NOT_FOUND (40401) 사용자를 찾을 수 없습니다.

 LOGIN_FAILED (40001) 로그인에 실패했습니다. 아이디와 비밀번호를 확인해주세요.

 NETWORK_ERROR (50301) 네트워크 오류가 발생했습니다.

 REQUEST_TIMEOUT (50801) 요청 시간이 초과되었습니다.

응답 강화 (src/utils/apiResponseHandler.ts):

 showPopup : 팝업 표시 필요 여부 자동 판단
 redirectTo : 리다이렉트 URL 자동 생성 (User/Admin 타입별)
 autoLogout : 자동 로그아웃 필요 여부 판단

5.1.5 재시도 로직 (타임아웃, 네트워크 오류)

타임아웃 설정:

기본 타임아웃: 10초 (API_TIMEOUT)
커스텀 타임아웃: options.timeoutMs 로 조정 가능

재시도 정책:

401 에러 (인증 실패): 토큰 갱신 후 1회 재시도
타임아웃: 재시도 없음 (에러 메시지 표시)
네트워크 오류: 재시도 없음 (에러 메시지 표시)

5.2 API 모듈 목록 (테이블 형태)

파일 주요 함수 설명 사용처

 api.ts apiFetch , publicApiFetch
공통 API 요청
함수

모든 API 모듈

 user.ts login , register , getProfile , updateProfile , changePassword
사용자 인증 및
관리

로그인, 회원가입, 프로필 페이지

 admin.ts loginAdmin , refreshAdminToken , getAdminProfile 관리자 인증 관리자 로그인, 프로필 페이지

 account.ts
 getAdminAccounts , createAdminAccount , updateAdminAccount ,
 deleteAdminAccount

관리자 계정 관리 운영자 관리 페이지 (S-ADMIN)

 common.ts getJwtConfig , getSystemInfo 공통 API JWT 설정 조회, 시스템 정보

 commonCode.ts
 getCommonCodes , getCodesByGroup , createCode , updateCode ,
 deleteCode

공통 코드 관리 코드 관리 페이지 (S-ADMIN)

 faq.ts
 getFaqs , getFaqById , createFaq , updateFaq , deleteFaq ,
 batchDeleteFaq

FAQ 관리 FAQ 목록, 상세, 생성, 수정 페이지

 qna.ts getQnas , getQnaById , createQna , updateQna , deleteQna , replyQna QnA 관리 QnA 목록, 상세, 생성, 답변 페이지

IITP DABT Admin Frontend 설계서

42 / 82

파일 주요 함수 설명 사용처

 notice.ts
 getNotices , getNoticeById , createNotice , updateNotice ,
 deleteNotice

공지사항 관리
공지사항 목록, 상세, 생성, 수정
페이지

 openApi.ts
 getOpenApiClients , approveOpenApiKey , rejectOpenApiKey ,
 extendOpenApiKey

OpenAPI 키 관리
OpenAPI 클라이언트 관리, 키 승인
페이지

특징:

일관된 네이밍: get* , create* , update* , delete* , batchDelete*
타입 안전: TypeScript 제네릭을 통한 타입 추론
에러 핸들링: 모든 함수는 ApiResponse<T> 반환

IITP DABT Admin Frontend 설계서

43 / 82

6. 라우팅 구조

6.1 라우트 정의

6.1.1 ROUTES 객체 구조 (PUBLIC, USER, ADMIN, COMMON)

파일: src/routes/index.ts

Frontend는 4단계 라우트 분류를 사용합니다:

1. PUBLIC - 공개 페이지 (로그인 불필요)

HOME: '/'

THEME_PREVIEW: '/theme-preview'

NOTICE: '/notice'

NOTICE_DETAIL: '/notice/:noticeId'

FAQ: '/faq'

QNA: '/qna'

QNA_DETAIL: '/qna/:qnaId'

ABOUT: '/about' # OpenAPI 소개

TERMS: '/terms' # 이용약관

PRIVACY: '/privacy' # 개인정보 처리방침

LOGIN: '/login'

REGISTER: '/register'

2. USER - 일반 사용자 페이지 (User 인증 필요)

DASHBOARD: '/dashbd'

PROFILE: '/profile'

QNA_CREATE: '/user/qna/create'

QNA_HISTORY: '/user/qna/history'

OPEN_API_MANAGEMENT: '/user/openapi'

3. ADMIN - 관리자 페이지 (Admin 인증 필요)

기능 라우트 패턴 접근 권한

대시보드 /admin/dashbd 모든 관리자

FAQ 관리 /admin/faqs/* VIEWER+ (조회), EDITOR+ (편집)

QnA 관리 /admin/qnas/* VIEWER+ (조회), EDITOR+ (편집)

공지사항 관리 /admin/notices/* VIEWER+ (조회), EDITOR+ (편집)

사용자 관리 /admin/users/* VIEWER+ (조회), ADMIN+ (편집)

운영자 관리 /admin/operators/* S-ADMIN 전용

OpenAPI 관리 /admin/openapi/clients/* , /admin/openapi/requests/* 모든 관리자 (조회), ADMIN+ (승인/거부)

코드 관리 /admin/code/* S-ADMIN 전용

4. COMMON - 공통 페이지

NOT_FOUND: '/404'

ERROR: '/error'

중첩 객체 구조:

IITP DABT Admin Frontend 설계서

44 / 82

ADMIN: {

 FAQ: {

 LIST: '/admin/faqs',

 CREATE: '/admin/faqs/create',

 EDIT: '/admin/faqs/:id/edit',

 DETAIL: '/admin/faqs/:id',

 },

 // ... 다른 기능들

}

6.1.2 ROUTE_META - 네비게이션 메타데이터

메타데이터 구조:

export const ROUTE_META = {

 [ROUTES.ADMIN.DASHBOARD]: {

 title: '대시보드',

 icon: 'Dashboard',

 requiresAuth: true,

 minRole: CODE_SYS_ADMIN_ROLES.VIEWER,

 },

 [ROUTES.ADMIN.OPERATORS.LIST]: {

 title: '운영자 관리',

 icon: 'AdminPanelSettings',

 requiresAuth: true,

 minRole: CODE_SYS_ADMIN_ROLES.SUPER_ADMIN, // S-ADMIN 전용

 },

}

활용:

 title : 페이지 제목 (네비게이션, 브레드크럼)
 icon : Material-UI 아이콘 이름
 requiresAuth : 인증 필요 여부
 minRole : 최소 요구 권한

6.1.3 RouteUtils

헬퍼 함수:

export const RouteUtils = {

 // 동적 라우트 생성 (예: /faq/:id → /faq/123)

 createDynamicRoute: (route: string, params: Record<string, string | number>): string => {

 let result = route;

 Object.entries(params).forEach(([key, value]) => {

 result = result.replace(`:`, String(value));

 });

 return result;

 },

 // FAQ 상세 페이지

 createFaqDetailRoute: (id: string | number): string => {

 return RouteUtils.createDynamicRoute(ROUTES.USER.FAQ_DETAIL, { id });

 },

 // 관리자 FAQ 편집

 createAdminFaqEditRoute: (id: string | number): string => {

 return RouteUtils.createDynamicRoute(ROUTES.ADMIN.FAQ.EDIT, { id });

 },

};

사용 예시:

IITP DABT Admin Frontend 설계서

45 / 82

// FAQ 상세 페이지로 이동

navigate(RouteUtils.createFaqDetailRoute(123)); // /user/faq/123

// 관리자 FAQ 편집 페이지로 이동

navigate(RouteUtils.createAdminFaqEditRoute(456)); // /admin/faqs/456/edit

6.2 라우팅 Flow

6.2.1 URL 접근 시 권한 체크 Flow

파일: src/App.tsx

<Routes>

 <Route path="/" element={<Layout />}>

 {/* 공개 페이지 (로그인 불필요) */}

 <Route index element={<Home />} />

 <Route path="/faq" element={<FaqList />} />

 <Route path="/login" element={<Login />} />

 {/* 일반 사용자 페이지 (PrivateRoute Guard) */}

 <Route

 path="/dashbd"

 element={

 <PrivateRoute>

 <Dashboard />

 </PrivateRoute>

 }

 />

 {/* 관리자 페이지 (AdminProtectedRoute Guard) */}

 <Route

 path="/admin/faqs"

 element={

 <AdminProtectedRoute>

 <AdminFaqList />

 </AdminProtectedRoute>

 }

 />

 </Route>

</Routes>

권한 체크 Flow:

IITP DABT Admin Frontend 설계서

46 / 82

사용자가 URL 접근 (예: /admin/faqs)

 │

 ▼

React Router - Route 매칭

 │

 ▼

<AdminProtectedRoute> Guard

 │

 ├─ isAdminAuthenticated() 호출

 │ │

 │ ├─ Admin 토큰 유효?

 │ │ └─ YES → 페이지 렌더링

 │ │

 │ └─ Admin 토큰 없음/만료?

 │ └─ NO → /admin/login 리다이렉트

 │ (state: { from: '/admin/faqs' } 저장)

 │

 ▼

페이지 컴포넌트 (AdminFaqList)

 │

 ▼

UI 권한 체크 (hasContentEditPermission)

 │

 ├─ VIEWER → 조회만 가능 (버튼 비활성화)

 └─ EDITOR+ → 모든 기능 가능

6.2.2 인증 실패 시 리다이렉트

PrivateRoute 리다이렉트:

// src/components/ProtectedRoute.tsx

if (!isUserAuthenticated()) {

 return <Navigate to={ROUTES.PUBLIC.LOGIN} state={{ from: location }} replace />;

}

AdminProtectedRoute 리다이렉트:

if (!isAdminAuthenticated()) {

 return <Navigate to={ROUTES.ADMIN.LOGIN} state={{ from: location }} replace />;

}

로그인 후 복원:

// src/pages/user/Login.tsx

const location = useLocation();

const from = location.state?.from?.pathname || '/dashbd';

const handleLoginSuccess = () => {

 navigate(from, { replace: true }); // 원래 페이지로 복원

};

시나리오:

1. 사용자가 /user/qna/create 접근 (비로그인)

2. PrivateRoute에서 인증 실패 감지

3. /login으로 리다이렉트 (state: { from: '/user/qna/create' })

4. 사용자 로그인 성공

5. /user/qna/create로 자동 복원

IITP DABT Admin Frontend 설계서

47 / 82

6.2.3 권한 부족 시 처리

UI 레벨 권한 체크:

// src/pages/admin/FaqList.tsx

const adminRole = getAdminRole();

const canEdit = hasContentEditPermission(adminRole);

return (

 <div>

 <DataTable data={faqs} />

 {canEdit ? (

 <Button onClick={handleCreate}>생성</Button>

) : (

 <Tooltip title="편집 권한이 없습니다.">

 <Button disabled>생성</Button>

 </Tooltip>

)}

 </div>

);

권한 부족 시 처리 방식:

1. 버튼 비활성화: VIEWER는 생성/수정/삭제 버튼 비활성화
2. 툴팁 표시: "편집 권한이 없습니다." 메시지
3. 메뉴 숨김: S-ADMIN 전용 메뉴는 다른 역할에게 숨김
4. 경고 메시지: 직접 URL 접근 시 "접근 권한이 없습니다." 표시

중요: Frontend의 권한 체크는 UX 개선 목적이며, Backend에서 실제 권한 검증을 수행합니다.

IITP DABT Admin Frontend 설계서

48 / 82

7. 주요 페이지 상세
페이지별 설명 템플릿:

페이지 목적
URL 경로
접근 권한 (Public / User / Admin 역할별)
주요 기능
사용 API (API 규격서 참조)
권한별 UI 차이 (VIEWER/EDITOR/ADMIN/S-ADMIN)
예외 처리 (인증 실패, 권한 부족, API 오류)

7.1 공개 페이지 (Public) - 인증 불필요

7.1.1 홈 페이지 - /

페이지: 서비스 메인 페이지 (공개 + 선택적 인증)

URL 경로: /

파일: src/pages/user/Home.tsx

접근 권한:

Public (로그인 불필요)
로그인 시 User 정보 표시 (선택적 인증)

주요 기능:

서비스 소개
최근 공지사항 미리보기
FAQ 미리보기
로그인 시 대시보드 바로가기

API:

 publicApiFetch 사용 (토큰 선택적 포함)

Error:

API 오류 → 에러 메시지 표시 (서비스 계속 이용 가능)

7.1.2 로그인 페이지 - /login

페이지: 일반 사용자 로그인

URL 경로: /login

파일: src/pages/user/Login.tsx

접근 권한:

Public (로그인 없이 접근 가능)
이미 로그인된 경우 홈 또는 원래 페이지로 리다이렉트

주요 기능:

이메일/비밀번호 입력
로그인 처리 (loginUser API)
로그인 실패 시 에러 메시지 표시
로그인 성공 시 원래 페이지 복원 (location.state.from)
Admin 로그인 정리 (User 우선권 확보)

API (상세는 API 규격서 참조):

IITP DABT Admin Frontend 설계서

49 / 82

 POST /api/user/login - 사용자 로그인

주요 처리 Flow:

1. 이미 User 로그인? → 홈 또는 원래 페이지로 리다이렉트

2. 이메일/비밀번호 입력

3. Admin 세션 정리 (clearLoginInfoByType('A'))

4. loginUser() API 호출

5. 성공 시 → location.state.from 또는 '/dashbd'로 이동

6. 실패 시 → 에러 메시지 표시

Error:

로그인 실패 (LOGIN_FAILED) → "아이디와 비밀번호를 확인해주세요."
네트워크 오류 → "네트워크 오류가 발생했습니다."

7.1.3 회원가입 페이지 - /register

페이지: 일반 사용자 회원가입

URL 경로: /register

파일: src/pages/user/Register.tsx

접근 권한:

Public (로그인 없이 접근 가능)

주요 기능:

이메일, 비밀번호, 이름 입력
Common 패키지 검증 함수 사용

 isValidEmail(email)

 isValidPassword(password)

 isValidName(name)

회원가입 처리
성공 시 로그인 페이지로 이동

API (상세는 API 규격서 참조):

 POST /api/user/register - 사용자 회원가입

Error:

이메일 중복 → "이미 사용 중인 이메일입니다."
비밀번호 검증 실패 → "8자 이상, 영문/숫자/특수문자 포함"
네트워크 오류 → 에러 메시지 표시

7.1.4 FAQ 목록 (공개) - /faq

페이지: 자주 묻는 질문 목록 조회 (공개)

URL 경로: /faq

파일: src/pages/user/FaqList.tsx

접근 권한:

Public (로그인 불필요)

주요 기능:

FAQ 목록 조회 (페이징, 검색)
카테고리별 필터링
FAQ 상세 보기

IITP DABT Admin Frontend 설계서

50 / 82

API (상세는 API 규격서 참조):

 GET /api/public/faq - FAQ 목록 조회

Error:

API 오류 → 에러 메시지 표시
빈 목록 → "등록된 FAQ가 없습니다." 표시

7.1.5 QnA 목록/상세 (공개) - /qna , /qna/:qnaId

페이지: 질문과 답변 목록 및 상세 조회 (공개)

URL 경로:

목록: /qna
상세: /qna/:qnaId

파일:

 src/pages/user/QnaList.tsx

 src/pages/user/QnaDetail.tsx

접근 권한:

Public (로그인 불필요)

주요 기능:

QnA 목록 조회 (페이징, 검색)
답변 완료/대기 상태별 필터링
QnA 상세 보기 (질문 + 답변)

API (상세는 API 규격서 참조):

 GET /api/public/qna - QnA 목록 조회
 GET /api/public/qna/:id - QnA 상세 조회

Error:

QnA 없음 (404) → "질문을 찾을 수 없습니다."
API 오류 → 에러 메시지 표시

7.1.6 공지사항 목록/상세 (공개) - /notice , /notice/:noticeId

페이지: 공지사항 목록 및 상세 조회 (공개)

URL 경로:

목록: /notice
상세: /notice/:noticeId

파일:

 src/pages/user/NoticeList.tsx

 src/pages/user/NoticeDetail.tsx

접근 권한:

Public (로그인 불필요)

주요 기능:

공지사항 목록 조회 (페이징)
공지사항 상세 보기

API (상세는 API 규격서 참조):

IITP DABT Admin Frontend 설계서

51 / 82

 GET /api/public/notice - 공지사항 목록 조회
 GET /api/public/notice/:id - 공지사항 상세 조회

Error:

공지사항 없음 (404) → "공지사항을 찾을 수 없습니다."
API 오류 → 에러 메시지 표시

7.1.7 정적 페이지 - /about , /terms , /privacy

페이지: 정적 콘텐츠 페이지

URL 경로:

 /about - OpenAPI 소개
 /terms - 이용약관
 /privacy - 개인정보 처리방침

파일:

 src/pages/public/OpenApiAbout.tsx

 src/pages/public/Terms.tsx

 src/pages/public/Privacy.tsx

접근 권한:

Public (로그인 불필요)

주요 기능:

정적 콘텐츠 표시
API 호출 없음

7.2 사용자 페이지 (User) - 일반 사용자 인증 필요

7.2.1 사용자 대시보드 - /dashbd

페이지: 사용자 메인 대시보드

URL 경로: /dashbd

파일: src/pages/user/Dashboard.tsx

접근 권한:

User 인증 필요 (PrivateRoute)

주요 기능:

사용자 정보 표시
My QnA 통계 (작성한 QnA 수, 답변 대기 중)
My OpenAPI 키 통계 (활성 키, 승인 대기)
최근 공지사항

API (상세는 API 규격서 참조):

 GET /api/user/stats - 사용자 통계 (향후)
 GET /api/user/qna - 나의 QnA 목록
 GET /api/user/open-api - 나의 API 키 목록

Error:

IITP DABT Admin Frontend 설계서

52 / 82

인증 실패 → /login 리다이렉트
API 오류 → 해당 섹션만 에러 표시

7.2.2 프로필 관리 - /profile

페이지: 사용자 프로필 조회/수정, 비밀번호 변경

URL 경로: /profile

파일: src/pages/user/UserProfile.tsx

접근 권한:

User 인증 필요 (PrivateRoute)

주요 기능:

프로필 조회 (이메일, 이름)
프로필 수정 (이름)
비밀번호 변경

API (상세는 API 규격서 참조):

 GET /api/user/profile - 프로필 조회
 PUT /api/user/profile - 프로필 수정
 PUT /api/user/password - 비밀번호 변경

Error:

인증 실패 → /login 리다이렉트
비밀번호 검증 실패 → "현재 비밀번호가 일치하지 않습니다."
API 오류 → 에러 메시지 표시

7.2.3 My QnA 관리 - /user/qna/*

페이지: 나의 질문 작성, 조회, 관리

URL 경로:

생성: /user/qna/create
히스토리: /user/qna/history

파일:

 src/pages/user/QnaCreate.tsx

 src/pages/user/QnaHistory.tsx

접근 권한:

User 인증 필요 (PrivateRoute)

주요 기능:

QnA 생성 (제목, 내용, 공개 여부)
나의 QnA 목록 조회
QnA 상세 보기 (질문 + 관리자 답변)

API (상세는 API 규격서 참조):

 POST /api/user/qna - QnA 생성
 GET /api/user/qna - 나의 QnA 목록
 GET /api/user/qna/:id - QnA 상세

Error:

인증 실패 → /login 리다이렉트
입력 검증 실패 → "제목과 내용을 입력해주세요."

IITP DABT Admin Frontend 설계서

53 / 82

API 오류 → 에러 메시지 표시

7.2.4 OpenAPI 키 관리 - /user/openapi

페이지: OpenAPI 인증키 신청, 조회, 관리

URL 경로: /user/openapi

파일: src/pages/user/OpenApiManagement.tsx

접근 권한:

�� User 인증 필요 (PrivateRoute)

주요 기능:

API 키 신청 (키 이름, 설명, 유효기간)
API 키 목록 조회
API 키 상세 (키 정보, 유효기간, 승인 상태)
API 키 갱신 신청 (유효기간 연장)
API 키 삭제 (논리 삭제)
API 키 복사 (클립보드)

API (상세는 API 규격서 참조):

 GET /api/user/open-api - 나의 API 키 목록
 POST /api/user/open-api - API 키 신청
 PUT /api/user/open-api/:id/extend - API 키 연장 신청
 DELETE /api/user/open-api/:id - API 키 삭제

API 키 상태:

PENDING (activeYn='N' , activeAt=null) - 승인 대기
ACTIVE (activeYn='Y' , 유효기간 내) - 활성
EXPIRED (activeYn='Y' , 유효기간 만료) - 만료
REJECTED (keyRejectReason 존재) - 거부됨

API 키 형식:

형식: 60자 길이의 16진수 문자열 (hex)
정규식: /^[a-f0-9]{60}$/
생성 방식: Backend의 authKeyGenerator.generate() 함수 사용

 crypto.randomBytes(30) 기반 생성 (30 bytes = 60 hex characters)
예시: a1b2c3d4e5f6789012345678901234567890abcdef1234567890abcdef123456
표시: Frontend에서 키 복사 기능 제공 (클립보드 복사)

권한별 UI 차이:

모든 사용자 동일 (자신의 API 키만 관리)

Error:

인증 실패 → /login 리다이렉트
입력 검증 실패 → "키 이름과 설명을 입력해주세요."
API 오류 → 에러 메시지 표시

7.2.5 공지사항 조회 - /user/notice/*

페이지: 사용자용 공지사항 목록/상세

URL 경로:

목록: /user/notice
상세: /user/notice/:id

IITP DABT Admin Frontend 설계서

54 / 82

파일:

 src/pages/user/NoticeList.tsx

 src/pages/user/NoticeDetail.tsx

접근 권한:

User 인증 필요 (PrivateRoute)

주요 기능:

공지사항 목록 조회 (페이징)
공지사항 상세 보기

API (상세는 API 규격서 참조):

 GET /api/user/notice - 공지사항 목록
 GET /api/user/notice/:id - 공지사항 상세

Error:

인증 실패 → /login 리다이렉트
공지사항 없음 (404) → "공지사항을 찾을 수 없습니다."

7.3 관리자 페이지 (Admin) - 관리자 인증 필요

7.3.1 관리자 로그인 - /admin/login

페이지: 관리자 로그인

URL 경로: /admin/login

파일: src/pages/admin/AdminLogin.tsx

접근 권한:

Public (로그인 없이 접근 가능)
이미 관리자 로그인된 경우 /admin/dashbd 로 리다이렉트

주요 기능:

이메일/비밀번호 입력
관리자 로그인 처리 (loginAdmin API)
로그인 성공 시 원래 페이지 복원
User 로그인 정리 (Admin 우선권 확보)

API (상세는 API 규격서 참조):

 POST /api/admin/login - 관리자 로그인

주요 처리 Flow:

1. 이미 Admin 로그인? → /admin/dashbd로 리다이렉트

2. 이메일/비밀번호 입력

3. User 세션 정리 (clearLoginInfoByType('U'))

4. loginAdmin() API 호출

5. 성공 시 → location.state.from 또는 '/admin/dashbd'로 이동

6. 실패 시 → 에러 메시지 표시

Error:

로그인 실패 → "관리자 정보를 확인해주세요."

IITP DABT Admin Frontend 설계서

55 / 82

네트워크 오류 → 에러 메시지 표시

7.3.2 관리자 대시보드 - /admin/dashbd

페이지: 관리자 메인 대시보드

URL 경로: /admin/dashbd

파일: src/pages/admin/AdminDashboard.tsx

접근 권한:

Admin 인증 필요 (AdminProtectedRoute)
모든 관리자 역할 접근 가능 (VIEWER+)

주요 기능:

OpenAPI 키 통계 (총 키, 활성 키, 만료 키, 승인 대기)
QnA 통계 (총 QnA, 답변 완료, 답변 대기)
최근 활동 현황

API (상세는 API 규격서 참조):

 GET /api/admin/openapi/stats - OpenAPI 통계
 GET /api/admin/qna/stats - QnA 통계

권한별 UI 차이:

모든 관리자 동일 (통계 조회만)

Error:

인증 실패 → /admin/login 리다이렉트
API 오류 → "통계 데이터를 불러오는 중 오류가 발생했습니다."

7.3.3 관리자 프로필 - /admin/profile

페이지: 관리자 프로필 조회/수정, 비밀번호 변경

URL 경로: /admin/profile

파일: src/pages/admin/AdminProfile.tsx

접근 권한:

Admin 인증 필요 (AdminProtectedRoute)

주요 기능:

프로필 조회 (이메일, 이름, 역할)
프로필 수정 (이름)
비밀번호 변경

API (상세는 API 규격서 참조):

 GET /api/admin/profile - 프로필 조회
 PUT /api/admin/profile - 프로필 수정
 PUT /api/admin/password - 비밀번호 변경

권한별 UI 차이:

모든 관리자 동일 (자신의 프로필만 수정)

Error:

인증 실패 → /admin/login 리다이렉트
비밀번호 검증 실패 → "현재 비밀번호가 일치하지 않습니다."

IITP DABT Admin Frontend 설계서

56 / 82

7.3.4 FAQ 관리 (EDITOR+) - /admin/faqs/*

페이지: FAQ 생성, 수정, 삭제, 관리

URL 경로:

목록: /admin/faqs
생성: /admin/faqs/create
상세: /admin/faqs/:id
수정: /admin/faqs/:id/edit

파일:

 src/pages/admin/FaqList.tsx

 src/pages/admin/FaqCreate.tsx

 src/pages/admin/FaqDetail.tsx

 src/pages/admin/FaqEdit.tsx

접근 권한:

Admin 인증 필요 (AdminProtectedRoute)
조회: VIEWER+ (모든 관리자)
생성/수정/삭제: EDITOR+ (hasContentEditPermission)

주요 기능:

FAQ 목록 조회 (페이징, 검색, 카테고리 필터)
FAQ 생성 (제목, 내용, 카테고리)
FAQ 수정
FAQ 삭제 (논리 삭제)
FAQ 일괄 삭제

API (상세는 API 규격서 참조):

 GET /api/admin/faq - FAQ 목록
 POST /api/admin/faq - FAQ 생성
 GET /api/admin/faq/:id - FAQ 상세
 PUT /api/admin/faq/:id - FAQ 수정
 DELETE /api/admin/faq/:id - FAQ 삭제
 DELETE /api/admin/faq/batch - FAQ 일괄 삭제

권한별 UI 차이:

VIEWER: 목록/상세 조회만, 생성/수정/삭제 버튼 숨김
EDITOR/ADMIN/S-ADMIN: 모든 기능 사용 가능

Error:

인증 실패 → /admin/login 리다이렉트
권한 부족 → 버튼 비활성화 + "편집 권한이 없습니다." 툴팁
입력 검증 실패 → "제목과 내용을 입력해주세요."
API 오류 → 에러 메시지 표시

7.3.5 QnA 관리 (EDITOR+) - /admin/qnas/*

페이지: QnA 조회, 답변 작성, 관리

URL 경로:

목록: /admin/qnas
상세: /admin/qnas/:id
답변: /admin/qnas/:id/reply
수정: /admin/qnas/:id/edit

IITP DABT Admin Frontend 설계서

57 / 82

파일:

 src/pages/admin/QnaManage.tsx

 src/pages/admin/QnaDetail.tsx

 src/pages/admin/QnaReply.tsx

 src/pages/admin/QnaEdit.tsx

접근 권한:

Admin 인증 필요 (AdminProtectedRoute)
조회: VIEWER+ (모든 관리자)
답변/수정/삭제: EDITOR+ (hasContentEditPermission)

주요 기능:

QnA 목록 조회 (페이징, 검색, 답변 상태 필터)
QnA 상세 보기 (질문 + 답변)
QnA 답변 작성
QnA 수정
QnA 삭제 (논리 삭제)
QnA 일괄 삭제

API (상세는 API 규격서 참조):

 GET /api/admin/qna - QnA 목록
 GET /api/admin/qna/:id - QnA 상세
 POST /api/admin/qna/:id/reply - 답변 작성
 PUT /api/admin/qna/:id - QnA 수정
 DELETE /api/admin/qna/:id - QnA 삭제
 DELETE /api/admin/qna/batch - QnA 일괄 삭제

권한별 UI 차이:

VIEWER: 목록/상세 조회만
EDITOR/ADMIN/S-ADMIN: 답변 작성, 수정, 삭제 가능

Error:

인증 실패 → /admin/login 리다이렉트
권한 부족 → 버튼 비활성화
API 오류 → 에러 메시지 표시

7.3.6 공지사항 관리 (EDITOR+) - /admin/notices/*

페이지: 공지사항 생성, 수정, 삭제, 관리

URL 경로:

목록: /admin/notices
생성: /admin/notices/create
상세: /admin/notices/:id
수정: /admin/notices/:id/edit

파일:

 src/pages/admin/NoticeManage.tsx

 src/pages/admin/NoticeCreate.tsx

 src/pages/admin/NoticeDetail.tsx

 src/pages/admin/NoticeEdit.tsx

접근 권한:

Admin 인증 필요 (AdminProtectedRoute)
조회: VIEWER+ (모든 관리자)

IITP DABT Admin Frontend 설계서

58 / 82

생성/수정/삭제: EDITOR+ (hasContentEditPermission)

주요 기능:

공지사항 목록 조회 (페이징, 검색)
공지사항 생성 (제목, 내용)
공지사항 수정
공지사항 삭제 (논리 삭제)
공지사항 일괄 삭제

API (상세는 API 규격서 참조):

 GET /api/admin/notice - 공지사항 목록
 POST /api/admin/notice - 공지사항 생성
 GET /api/admin/notice/:id - 공지사항 상세
 PUT /api/admin/notice/:id - 공지사항 수정
 DELETE /api/admin/notice/:id - 공지사항 삭제
 DELETE /api/admin/notice/batch - 공지사항 일괄 삭제

권한별 UI 차이:

VIEWER: 목록/상세 조회만
EDITOR/ADMIN/S-ADMIN: 모든 기능 사용 가능

Error:

인증 실패 → /admin/login 리다이렉트
권한 부족 → 버튼 비활성화
API 오류 → 에러 메시지 표시

7.3.7 사용자 관리 (ADMIN+) - /admin/users/*

페이지: 일반 사용자 계정 조회, 생성, 수정, 삭제

URL 경로:

목록: /admin/users
생성: /admin/users/create
상세: /admin/users/:id
수정: /admin/users/:id/edit

파일:

 src/pages/admin/UserManagement.tsx

 src/pages/admin/UserCreate.tsx

 src/pages/admin/UserDetail.tsx

 src/pages/admin/UserEdit.tsx

접근 권한:

Admin 인증 필요 (AdminProtectedRoute)
조회: VIEWER+ (hasUserAccountReadPermission)
생성/수정/삭제: ADMIN+ (hasUserAccountEditPermission)

주요 기능:

사용자 목록 조회 (페이징, 검색, 상태 필터)
사용자 생성
사용자 상세 보기 (가입일, 최근 접속일, 보유 API 키 등)
사용자 수정 (이름, 상태)
사용자 삭제 (논리 삭제)
사용자 일괄 삭제
사용자 비밀번호 초기화

IITP DABT Admin Frontend 설계서

59 / 82

API (상세는 API 규격서 참조):

 GET /api/admin/user-accounts - 사용자 목록
 POST /api/admin/user-accounts - 사용자 생성
 GET /api/admin/user-accounts/:id - 사용자 상세
 PUT /api/admin/user-accounts/:id - 사용자 수정
 DELETE /api/admin/user-accounts/:id - 사용자 삭제
 DELETE /api/admin/user-accounts/batch - 사용자 일괄 삭제

권한별 UI 차이:

VIEWER/EDITOR: 목록/상세 조회만, 생성/수정/삭제 버튼 숨김
ADMIN/S-ADMIN: 모든 기능 사용 가능

Error:

인증 실패 → /admin/login 리다이렉트
권한 부족 → 버튼 비활성화 + "편집 권한이 없습니다." 툴팁
이메일 중복 → "이미 사용 중인 이메일입니다."
API 오류 → 에러 메시지 표시

7.3.8 관리자 계정 관리 (S-ADMIN) - /admin/operators/*

페이지: 운영자(관리자) 계정 생성, 수정, 삭제, 역할 관리

URL 경로:

목록: /admin/operators
생성: /admin/operators/create
상세: /admin/operators/:id
수정: /admin/operators/:id/edit

파일:

 src/pages/admin/OperatorManagement.tsx

 src/pages/admin/OperatorCreate.tsx

 src/pages/admin/OperatorDetail.tsx

 src/pages/admin/OperatorEdit.tsx

접근 권한:

Admin 인증 필요 (AdminProtectedRoute)
S-ADMIN 전용 (hasAccountManagementPermission)

주요 기능:

운영자 목록 조회 (페이징, 검색, 역할 필터)
운영자 생성 (이메일, 비밀번호, 이름, 역할)
운영자 상세 보기
운영자 수정 (이름, 역할, 상태)
운영자 삭제 (논리 삭제)
운영자 일괄 삭제
이메일 중복 확인
비밀번호 변경

API (상세는 API 규격서 참조):

 GET /api/admin/account - 운영자 목록
 POST /api/admin/account - 운영자 생성
 GET /api/admin/account/:id - 운영자 상세
 PUT /api/admin/account/:id - 운영자 수정
 DELETE /api/admin/account/:id - 운영자 삭제
 DELETE /api/admin/account/batch - 운영자 일괄 삭제

IITP DABT Admin Frontend 설계서

60 / 82

 POST /api/admin/account/check-email - 이메일 중복 확인

권한별 UI 차이:

VIEWER/EDITOR/ADMIN: 메뉴 자체가 숨김
S-ADMIN: 모든 기능 사용 가능

Error:

인증 실패 → /admin/login 리다이렉트
권한 부족 (S-ADMIN 아님) → "접근 권한이 없습니다."
이메일 중복 → "이미 사용 중인 이메일입니다."
API 오류 → 에러 메시지 표시

7.3.9 OpenAPI 클라이언트 관리 (전체) - /admin/openapi/*

페이지: OpenAPI 클라이언트 및 API 키 승인 관리

URL 경로:

클라이언트 목록: /admin/openapi/clients
클라이언트 상세: /admin/openapi/clients/:id
클라이언트 수정: /admin/openapi/clients/:id/edit
승인 요청 목록: /admin/openapi/requests
승인 요청 상세: /admin/openapi/requests/:id

파일:

 src/pages/admin/OpenApiManage.tsx (클라이언트 목록)
 src/pages/admin/OpenApiDetail.tsx (클라이언트 상세)
 src/pages/admin/OpenApiEdit.tsx (클라이언트 수정)
 src/pages/admin/OpenApiRequests.tsx (승인 요청 목록)
 src/pages/admin/OpenApiRequestDetail.tsx (승인 요청 상세)

접근 권한:

Admin 인증 필요 (AdminProtectedRoute)
조회: VIEWER+ (모든 관리자)
승인/거부/연장/삭제: ADMIN+ (hasUserAccountEditPermission)

주요 기능:

OpenAPI 클라이언트 목록 조회 (사용자별 API 키 현황)
클라이언트 상세 보기 (보유 API 키 목록)
API 키 승인 요청 목록 (activeYn='N' , activeAt=null)
API 키 승인/거부
API 키 유효기간 연장
API 키 삭제

API (상세는 API 규격서 참조):

 GET /api/admin/open-api - OpenAPI 클라이언트 목록
 GET /api/admin/open-api/:id - 클라이언트 상세
 PUT /api/admin/open-api/:id/approve - API 키 승인
 PUT /api/admin/open-api/:id/reject - API 키 거부
 PUT /api/admin/open-api/:id/extend - API 키 연장
 DELETE /api/admin/open-api/:id - API 키 삭제

API 키 형식:

형식: 60자 길이의 16진수 문자열 (hex)
정규식: /^[a-f0-9]{60}$/
생성 방식: Backend의 authKeyGenerator.generate() 함수 사용

 crypto.randomBytes(30) 기반 생성 (30 bytes = 60 hex characters)

IITP DABT Admin Frontend 설계서

61 / 82

예시: a1b2c3d4e5f6789012345678901234567890abcdef1234567890abcdef123456

권한별 UI 차이:

VIEWER/EDITOR: 목록/상세 조회만, 승인/거부/연장 버튼 숨김
ADMIN/S-ADMIN: 모든 기능 사용 가능

Error:

인증 실패 → /admin/login 리다이렉트
권한 부족 → 버튼 비활성화
API 오류 → 에러 메시지 표시

7.3.10 코드 관리 (S-ADMIN) - /admin/code/*

페이지: 공통 코드 그룹 및 코드 관리

URL 경로:

코드 목록: /admin/code
코드 그룹 상세: /admin/code/group/:groupId
코드 생성: /admin/code/create
코드 상세: /admin/code/:id
코드 수정: /admin/code/:id/edit

파일:

 src/pages/admin/CodeManagement.tsx

 src/pages/admin/CodeGroupDetail.tsx

 src/pages/admin/CodeCreate.tsx

 src/pages/admin/CodeDetail.tsx

접근 권한:

Admin 인증 필요 (AdminProtectedRoute)
S-ADMIN 전용 (hasAccountManagementPermission)

주요 기능:

코드 그룹 목록 조회
코드 그룹별 상세 (하위 코드 목록)
코드 생성
코드 수정
코드 삭제

API (상세는 API 규격서 참조):

 GET /api/admin/common-code - 코드 그룹 목록
 GET /api/admin/common-code/group/:id - 코드 그룹 상세
 POST /api/admin/common-code - 코드 생성
 PUT /api/admin/common-code/:id - 코드 수정
 DELETE /api/admin/common-code/:id - 코드 삭제

권한별 UI 차이:

VIEWER/EDITOR/ADMIN: 메뉴 자체가 숨김
S-ADMIN: 모든 기능 사용 가능

Error:

인증 실패 → /admin/login 리다이렉트
권한 부족 → "접근 권한이 없습니다."
API 오류 → 에러 메시지 표시

IITP DABT Admin Frontend 설계서

62 / 82

7.4 공통 페이지 (Common)

7.4.1 404 페이지 - /404

페이지: 페이지를 찾을 수 없을 때 표시

URL 경로: /404 (자동 리다이렉트)

접근 권한:

Public

주요 기능:

"페이지를 찾을 수 없습니다." 메시지
홈으로 돌아가기 버튼

7.4.2 에러 페이지 - /error

페이지: 시스템 오류 발생 시 표시

URL 경로: /error

접근 권한:

Public

주요 기능:

"시스템 오류가 발생했습니다." 메시지
홈으로 돌아가기 버튼

IITP DABT Admin Frontend 설계서

63 / 82

8. 공통 컴포넌트

8.1 컴포넌트 분류 및 역할
Frontend의 공통 컴포넌트는 재사용성과 일관된 UI를 위해 체계적으로 분류됩니다.

분류 체계:

1. 레이아웃 컴포넌트: 페이지 전체 구조 (Layout, AppBar, Footer 등)
2. 관리자 전용 컴포넌트: 관리자 페이지 전용 (SideNav, AdminPageHeader)
3. 공통 UI 컴포넌트: 범용 재사용 컴포넌트 (DataTable, Pagination, StatusChip 등)
4. 폼 컴포넌트: 입력 폼 (LoginForm, ProfileForm)
5. 피드백 컴포넌트: 로딩, 에러, 토스트 등

8.2 컴포넌트 목록 (테이블 형태)

컴포넌트명 경로 설명 주요 사용처

레이아웃

 Layout.tsx /components/ 전체 레이아웃 (Header + Content + Footer) 모든 페이지

 AppBar.tsx /components/ 사용자 상단 앱바 User 페이지

 AppBarCommon.tsx /components/ 공통 앱바 로직 AppBar 공유

 AdminMenuBar.tsx /components/ 관리자 메뉴바 Admin 페이지

 Footer.tsx /components/ 푸터 모든 페이지

관리자 전용

 AdminPageHeader.tsx /components/admin/ 관리자 페이지 헤더 Admin 페이지 상단

 SideNav.tsx /components/admin/ 관리자 사이드 네비게이션 (권한별 메뉴 표시) Admin 페이지 좌측

데이터 표시

 DataTable.tsx /components/common/ 데이터 테이블 (정렬, 클릭 이벤트) 모든 목록 페이지

 TableListBody.tsx /components/common/ 테이블 리스트 본문 테이블 형식 목록

 CardListBody.tsx /components/common/ 카드 리스트 본문 카드 형식 목록

 ListItemCard.tsx /components/common/ 리스트 아이템 카드 카드 리스트

 EmptyState.tsx /components/common/ 빈 상태 표시 ("데이터가 없습니다.") 빈 목록 페이지

페이지 구성

 PageHeader.tsx /components/common/ 페이지 헤더 페이지 상단

 PageTitle.tsx /components/common/ 페이지 제목 페이지 타이틀

 ListHeader.tsx /components/common/ 리스트 헤더 (검색, 필터) 목록 페이지 상단

 ListScaffold.tsx /components/common/ 리스트 스캐폴드 (목록 구조 템플릿) 목록 페이지

 ListTotal.tsx /components/common/ 리스트 총 개수 표시 목록 페이지

 Pagination.tsx /components/common/ 페이지네이션 목록 페이지 하단

입력 및 액션

 SelectField.tsx /components/common/ 셀렉트 필드 (드롭다운) 검색 필터, 폼 입력

 ThemedButton.tsx /components/common/ 테마 버튼 (User/Admin 색상) 모든 버튼

 ByteLimitHelper.tsx /components/common/ 바이트 제한 헬퍼 (텍스트 입력) 폼 입력

IITP DABT Admin Frontend 설계서

64 / 82

컴포넌트명 경로 설명 주요 사용처

피드백

 StatusChip.tsx /components/common/ 상태 칩 (활성/비활성/대기 등) 상태 표시

 QnaTypeChip.tsx /components/common/ QnA 타입 칩 (공개/비공개) QnA 목록

 ThemedCard.tsx /components/common/ 테마 카드 대시보드, 통계

 LoadingSpinner.tsx /components/ 로딩 스피너 API 호출 중

 ErrorAlert.tsx /components/ 에러 알림 에러 발생 시

다이얼로그

 CommonDialog.tsx /components/ 공통 다이얼로그 (확인/취소) 삭제 확인 등

 CommonToast.tsx /components/ 공통 토스트 (알림) 성공/실패 메시지

 ToastProvider.tsx /components/ 토스트 프로바이더 전역 토스트 관리

 ExtendKeyDialog.tsx /components/common/ API 키 연장 다이얼로그 OpenAPI 키 연장

폼

 LoginForm.tsx /components/ 로그인 폼 (공통) User/Admin 로그인

 ProfileForm.tsx /components/ 프로필 폼 (공통) User/Admin 프로필

라우트 가드

 ProtectedRoute.tsx /components/ 권한 체크 Guard (PrivateRoute, AdminProtectedRoute) 보호된 라우트

총 30개 이상의 컴포넌트가 체계적으로 분류되어 재사용됩니다.

IITP DABT Admin Frontend 설계서

65 / 82

9. 유틸리티 함수

9.1 유틸리티 함수 목록 (테이블 형태)

파일 주요 함수 설명 사용처

 auth.ts

 isSAdmin , isAdmin , hasContentEditPermission ,
 hasUserAccountEditPermission , hasAccountManagementPermission ,
 hasMenuAccess , hasActionPermission

권한 체크 함수 (8개)
모든 관리자
페이지 (버튼,
메뉴 제어)

 jwt.ts
 isValidTokenFormat , extractTokenInfo , isTokenExpired ,
 getTokenTimeRemaining , shouldRefreshToken

JWT 토큰 검증 및 만료 체크
인증 관련 모든
로직

 apiResponseHandler.ts
 enhanceApiResponse , handleApiResponse , shouldShowPopup ,
 shouldAutoLogout , getRedirectUrl

API 응답 강화 및 에러 핸들링 모든 API 호출

 date.ts formatYmd , formatYmdHm , formatRelativeTime
날짜 포맷팅 (YYYY-MM-DD,
YYYY-MM-DD HH:mm 등)

목록, 상세 페이지
(날짜 표시)

 openApiStatus.ts getOpenApiKeyStatus

OpenAPI 키 상태 판단
(PENDING, ACTIVE,
EXPIRED, REJECTED)

OpenAPI 관리
페이지

9.2 Custom React Hooks (테이블 형태)

Hook 주요 기능 목적

 useDataFetching API 호출, 로딩/에러/빈 상태 자동 관리, 자동/수동 페칭 목록 페이지의 반복 코드 제거 (로딩, 에러, 빈 상태 통합 관리)

 useQuerySync URL 쿼리 파라미터 동기화 (page, limit, search 등) 검색/페이징 상태를 URL에 유지 (뒤로가기 지원, 공유 가능)

 usePagination 페이지 상태 관리 (page, limit, total, totalPages) 페이지네이션 로직 통합

 usePasswordValidation 비밀번호 실시간 검증 (8자 이상, 영문/숫자/특수문자 포함) 회원가입, 비밀번호 변경 시 즉시 피드백

 useInputWithTrim 입력 값 자동 trim 처리 (앞뒤 공백 제거) 사용자 입력 정규화 (이메일, 이름 등)

 useErrorHandler 에러 상태 관리 및 자동 초기화 에러 처리 통합 (자동 닫기 타이머)

 useCommonCode 공통 코드 조회 및 캐싱 드롭다운, 필터에서 코드 목록 재사용

IITP DABT Admin Frontend 설계서

66 / 82

10. 환경 설정 및 빌드

10.1 환경 변수 설정

10.1.1 .env 파일 구조

파일 위치: fe/.env (개발), fe/.env.production (프로덕션)

Vite 환경 변수 규칙:

모든 환경 변수는 VITE_ prefix 필수
 import.meta.env.VITE_* 로 접근

10.1.2 주요 환경 변수

변수명 설명 기본값 예시

 VITE_API_BASE_URL Backend API URL http://localhost:30000 http://api.example.com

 VITE_API_TIMEOUT API 타임아웃 (ms) 10000 (10초) 30000 (30초)

 VITE_OPEN_API_DOC_URL OpenAPI 문서 URL http://localhost:8080/api-docs http://api.example.com/docs

 VITE_OPEN_API_SERVER_URL OpenAPI 서버 URL http://localhost:8080 http://api.example.com

 VITE_BASE Base URL (서브 경로 배포) / /admin

 VITE_PORT 개발 서버 포트 5173 3000

사용 예시 (src/config.ts):

export const API_BASE_URL = import.meta.env.VITE_API_BASE_URL || 'http://localhost:30000';

export const API_TIMEOUT = Number(import.meta.env.VITE_API_TIMEOUT) || 10000;

export const OPEN_API_DOC_URL = import.meta.env.VITE_OPEN_API_DOC_URL || 'http://localhost:8080/api-docs';

10.2 빌드 설정

10.2.1 Vite 플러그인 설정

import { defineConfig, loadEnv } from 'vite'

import react from '@vitejs/plugin-react'

export default defineConfig(({ mode }) => {

 const env = loadEnv(mode, process.cwd(), '')

 return {

 plugins: [react()],

 base: env.VITE_BASE || '/',

 server: {

 port: Number(env.VITE_PORT) || 5173,

 },

 build: {

 outDir: 'dist',

 },

 }

})

플러그인:

 @vitejs/plugin-react : React Fast Refresh, JSX 변환

IITP DABT Admin Frontend 설계서

67 / 82

10.2.2 개발 서버 설정

포트: VITE_PORT (기본 5173)
HMR: Hot Module Replacement 자동 지원
CORS: Backend API 프록시 필요 시 설정 가능

10.2.3 빌드 출력 설정

출력 디렉토리: dist/
정적 자산: dist/assets/ (JS, CSS, 이미지 등)
빌드 정보: dist/build-info.json (버전, 빌드 시각)

10.3 TypeScript 설정
Project References:

{

 "references": [

 { "path": "../packages/common" }, // Common 패키지 참조

 { "path": "./tsconfig.app.json" }, // App 설정

 { "path": "./tsconfig.node.json" } // Node 설정 (Vite)

]

}

경로 매핑:

{

 "compilerOptions": {

 "baseUrl": ".",

 "paths": {

 "packages/common/*": ["../packages/common/*"]

 }

 }

}

10.4 빌드 및 배포

10.4.1 개발 환경 실행 (npm run dev)

cd fe

npm run dev

실행 결과:

VITE v5.0.8 ready in 500 ms

➜ Local: http://localhost:5173/

➜ Network: http://192.168.x.x:5173/

➜ press h to show help

10.4.2 프로덕션 빌드 (npm run build)

cd fe

npm run build

빌드 단계:

IITP DABT Admin Frontend 설계서

68 / 82

1. rimraf dist # 이전 빌드 삭제

2. tsc -b # TypeScript 컴파일 (타입 체크)

3. vite build # Vite 빌드 (번들링, 최적화)

4. node scripts/build-info.js # 빌드 정보 생성

빌드 결과:

dist/

 index.html # 엔트리 HTML

 build-info.json # 빌드 정보 (버전, 빌드 시각)

 assets/

 index-[hash].js # 번들 JS

 index-[hash].css # 번들 CSS

 logo-[hash].png # 이미지 자산

10.4.3 빌드 결과물 (/dist)

파일 구조:

dist/

 index.html # SPA 엔트리 포인트

 build-info.json # { version, buildDate }

 assets/

 index-[hash].js # Main JS Bundle

 vendor-[hash].js # Vendor Bundle (React, MUI 등)

 index-[hash].css # Main CSS Bundle

빌드 정보 예시 (build-info.json):

{

 "version": "1.0.0",

 "buildDate": "2025-11-07 14:30:45.123"

}

10.4.4 배포 시 주의사항

1. SPA 라우팅 설정 (Nginx fallback)

Nginx 설정 예시:

location / {

 root /var/www/html/fe/dist;

 try_files / /index.html; # SPA Fallback

}

이유: React Router는 클라이언트 라우팅이므로, 모든 경로를 index.html 로 fallback 필요

2. 환경 변수 주입

프로덕션 빌드 전 .env.production 설정:

VITE_API_BASE_URL=https://api.production.com

VITE_API_TIMEOUT=30000

3. CORS 설정 확인

Backend API 서버에서 Frontend Origin 허용 필요:

IITP DABT Admin Frontend 설계서

69 / 82

// BE: src/index.ts

app.use(cors({

 origin: 'https://admin.production.com', // Frontend URL

 credentials: true

}));

4. 빌드 정보 표시 (scripts/build-info.js)

빌드 버전 및 빌드 시각을 dist/build-info.json 으로 자동 생성하여 버전 추적 가능

IITP DABT Admin Frontend 설계서

70 / 82

11. 예외 처리 및 에러 핸들링

11.1 API 에러 처리

11.1.1 네트워크 오류, 타임아웃

네트워크 오류 처리:

// src/api/api.ts

try {

 const res = await fetch(url, { signal: controller.signal });

 // ...

} catch (e: any) {

 if (e.name === 'AbortError') {

 return enhanceApiResponse({

 success: false,

 errorMessage: '요청 시간이 초과되었습니다.',

 errorCode: ErrorCode.REQUEST_TIMEOUT

 });

 }

 return enhanceApiResponse({

 success: false,

 errorMessage: '네트워크 오류가 발생했습니다.',

 errorCode: ErrorCode.NETWORK_ERROR

 });

}

타임아웃 설정:

기본 타임아웃: 10초
 AbortController 를 통한 요청 취소

사용자 메시지:

타임아웃: "요청 시간이 초과되었습니다."
네트워크 오류: "네트워크 오류가 발생했습니다."

11.1.2 인증 오류 (401) - 자동 토큰 갱신 시도

401 에러 처리 Flow:

API 요청 → 401 Unauthorized

 │

 ▼

Refresh Token 유효성 확인

 │

 ├─ 유효? → Refresh Token으로 새 토큰 발급

 │ │

 │ ├─ 성공 → 동일 API 재시도 (1회만)

 │ │ │

 │ │ ├─ 성공 → 정상 응답 반환

 │ │ └─ 실패 → 에러 응답 반환

 │ │

 │ └─ 실패 → 자동 로그아웃 + 로그인 페이지 리다이렉트

 │

 └─ 만료? → 자동 로그아웃 + 로그인 페이지 리다이렉트

자동 처리:

 enhanceApiResponse() 가 autoLogout: true 설정
 getRedirectUrl() 이 User/Admin 타입별 로그인 페이지 반환

IITP DABT Admin Frontend 설계서

71 / 82

토큰 제거 후 자동 리다이렉트

사용자 메시지:

"인증이 필요합니다. 다시 로그인해주세요."

11.1.3 권한 오류 (403)

권한 오류 처리:

if (data.errorCode === ErrorCode.ACCESS_DENIED) {

 return {

 ...response,

 errorMessage: '접근 권한이 없습니다.',

 redirectTo: '/', // 홈으로 리다이렉트

 };

}

사용자 메시지:

"접근 권한이 없습니다."

처리 방식:

에러 메시지 표시 후 홈으로 리다이렉트

11.1.4 서버 오류 (500)

서버 오류 처리:

if (res.status >= 500) {

 return enhanceApiResponse({

 success: false,

 errorMessage: '서버 오류가 발생했습니다. 잠시 후 다시 시도해주세요.',

 errorCode: ErrorCode.INTERNAL_SERVER_ERROR

 });

}

사용자 메시지:

"서버 오류가 발생했습니다. 잠시 후 다시 시도해주세요."

처리 방식:

에러 메시지 표시
재시도 없음 (사용자가 수동으로 재시도)

11.2 사용자 친화적 에러 메시지

11.2.1 ErrorCode 기반 메시지 생성 (createUserFriendlyMessage)

파일: src/api/api.ts

IITP DABT Admin Frontend 설계서

72 / 82

function createUserFriendlyMessage(data: any): string {

 if (data?.errorMessage) {

 return data.errorMessage; // Backend에서 제공한 메시지 우선

 }

 if (data?.errorCode) {

 switch (data.errorCode) {

 case ErrorCode.UNAUTHORIZED:

 return '인증이 필요합니다. 다시 로그인해주세요.';

 case ErrorCode.TOKEN_EXPIRED:

 return '로그인 세션이 만료되었습니다. 다시 로그인해주세요.';

 case ErrorCode.INVALID_TOKEN:

 return '유효하지 않은 인증 정보입니다. 다시 로그인해주세요.';

 case ErrorCode.ACCESS_DENIED:

 return '접근 권한이 없습니다.';

 case ErrorCode.USER_NOT_FOUND:

 return '사용자를 찾을 수 없습니다.';

 case ErrorCode.LOGIN_FAILED:

 return '로그인에 실패했습니다. 아이디와 비밀번호를 확인해주세요.';

 case ErrorCode.NETWORK_ERROR:

 return '네트워크 오류가 발생했습니다.';

 case ErrorCode.REQUEST_TIMEOUT:

 return '요청 시간이 초과되었습니다.';

 default:

 return '오류가 발생했습니다. 다시 시도해주세요.';

 }

 }

 return '알 수 없는 오류가 발생했습니다.';

}

메시지 우선순위:

1. Backend errorMessage (있으면 우선 사용)
2. ErrorCode 기반 Frontend 메시지
3. 기본 메시지

11.2.2 Toast/Alert를 통한 에러 표시

ErrorAlert 컴포넌트:

// src/components/ErrorAlert.tsx

<Alert severity="error" onClose={onClose}>

 {error}

</Alert>

CommonToast 사용:

// src/components/ToastProvider.tsx

const { showToast } = useToast();

// 성공 메시지

showToast('FAQ가 성공적으로 생성되었습니다.', 'success');

// 에러 메시지

showToast('FAQ 생성에 실패했습니다.', 'error');

표시 방식:

Alert: 페이지 상단에 고정 표시 (닫기 버튼 포함)
Toast: 화면 하단에 자동 사라지는 알림 (3-5초)

IITP DABT Admin Frontend 설계서

73 / 82

11.3 토큰 갱신 실패 시 처리

11.3.1 자동 로그아웃 및 로그인 페이지 리다이렉트

처리 Flow:

토큰 갱신 실패

 │

 ▼

removeTokens() 호출 (현재 타입의 토큰 제거)

 │

 ▼

clearLoginInfo() 호출 (현재 타입의 사용자 정보 제거)

 │

 ▼

리다이렉트 URL 생성

 │

 ├─ Admin 타입? → /admin/login

 └─ User 타입? → /login

 │

 ▼

window.location.href = redirectTo (페이지 이동)

파일: src/utils/apiResponseHandler.ts

export function handleApiResponse<T>(response: ApiResponse<T>, onSuccess, onError) {

 if (!response.success) {

 // 자동 로그아웃 처리

 if (response.autoLogout) {

 const userType = getUserType();

 removeTokensByType(userType === 'A' ? 'A' : 'U');

 }

 // 리다이렉트 처리

 if (response.redirectTo) {

 setTimeout(() => {

 window.location.href = response.redirectTo;

 }, 100); // 에러 메시지 표시 후 이동

 }

 }

}

자동 로그아웃 발생 ErrorCode:

 TOKEN_EXPIRED (40102)
 INVALID_TOKEN (40103)
 UNAUTHORIZED (40101)
 TOKEN_REQUIRED (40104)

11.4 권한 부족 시 UI 처리

11.4.1 버튼 비활성화, 메뉴 숨김, 경고 메시지

버튼 비활성화 예시:

IITP DABT Admin Frontend 설계서

74 / 82

const canEdit = hasContentEditPermission(adminRole);

<Button

 disabled={!canEdit}

 onClick={handleCreate}

>

 생성

</Button>

{!canEdit && (

 <Tooltip title="편집 권한이 없습니다.">

 <InfoIcon />

 </Tooltip>

)}

메뉴 숨김 예시:

// src/components/admin/SideNav.tsx

const adminRole = getAdminRole();

{hasAccountManagementPermission(adminRole) && (

 <MenuItem onClick={() => navigate('/admin/operators')}>

 운영자 관리

 </MenuItem>

)}

경고 메시지 예시:

if (!hasContentEditPermission(adminRole)) {

 showToast('편집 권한이 없습니다.', 'error');

 return;

}

권한 체크 시점:

1. 라우트 가드: AdminProtectedRoute (인증 체크)
2. 메뉴 렌더링: 역할별 메뉴 표시/숨김
3. 버튼 클릭: 액션 실행 전 권한 확인
4. API 호출 전: 클라이언트 측 사전 검증

IITP DABT Admin Frontend 설계서

75 / 82

12. 성능 최적화

12.1 코드 스플리팅 (Lazy Loading)

12.1.1 관리자 페이지 Lazy Loading (React.lazy() + Suspense)

파일: src/App.tsx

import { Suspense, lazy } from 'react';

import LoadingSpinner from './components/LoadingSpinner';

// 관리자 페이지 Lazy Loading

const AdminProfile = lazy(() => import('./pages/admin/AdminProfile'));

const AdminFaqList = lazy(() => import('./pages/admin/FaqList'));

const AdminQnaList = lazy(() => import('./pages/admin/QnaManage'));

const AdminNoticeList = lazy(() => import('./pages/admin/NoticeManage'));

const AdminOpenApiClients = lazy(() => import('./pages/admin/OpenApiManage'));

const AdminOpenApiRequests = lazy(() => import('./pages/admin/OpenApiRequests'));

// ... 추가 관리자 페이지

// Suspense로 래핑

<Route

 path="/admin/faqs"

 element={

 <AdminProtectedRoute>

 <Suspense fallback={<LoadingSpinner loading={true} />}>

 <AdminFaqList />

 </Suspense>

 </AdminProtectedRoute>

 }

/>

12.1.2 구현 위치: App.tsx

적용 페이지:

모든 관리자 페이지 (/admin/*)
공개 페이지 (초기 로드 필요)
사용자 페이지 (초기 로드 필요)

12.2 Vite 빌드 최적화

12.2.1 Tree Shaking (기본 제공)

Vite는 ES Module 기반으로 사용하지 않는 코드를 자동 제거합니다.

12.2.2 번들 크기 최적화

Chunk 분리:

dist/assets/

 index-[hash].js # Main Bundle

 vendor-[hash].js # Vendor Bundle (React, MUI 등)

 admin-[hash].js # Admin 페이지 (Lazy Loading)

IITP DABT Admin Frontend 설계서

76 / 82

12.3 API 요청 최적화

12.3.1 토큰 자동 갱신 (중복 요청 방지)

중복 갱신 방지 메커니즘:

여러 API가 동시에 호출되어도 토큰 갱신은 1회만 발생
 ensureValidToken() 함수가 갱신 중 여부 체크
불필요한 중복 요청 방지

효과:

서버 부하 감소
토큰 갱신 속도 향상

12.3.2 API 타임아웃 설정 (10초)

기본 타임아웃: 10초 (API_TIMEOUT)

커스텀 타임아웃:

// 대용량 데이터 조회 시 30초

await apiFetch('/api/admin/logs', { timeoutMs: 30000 });

IITP DABT Admin Frontend 설계서

77 / 82

13. 보안

13.1 토큰 보안

13.1.1 LocalStorage 사용 (XSS 주의 필요)

저장 위치: LocalStorage

보안 고려사항:

XSS 공격에 취약: LocalStorage는 JavaScript로 접근 가능
HttpOnly Cookie 대안: 현재는 LocalStorage 사용 (향후 개선 검토)
HTTPS 필수: 프로덕션 환경에서는 HTTPS 사용 필수

완화 방안:

토큰 형식 검증 (isValidTokenFormat)
토큰 만료 체크 (자동 정리)
Content Security Policy (CSP) 설정 권장

13.1.2 토큰 형식 검증 (isValidTokenFormat)

// src/utils/jwt.ts

export function isValidTokenFormat(token: string): boolean {

 if (!token || typeof token !== 'string') return false;

 const parts = token.split('.');

 return parts.length === 3; // header.payload.signature

}

검증 시점:

토큰 저장 시 (saveTokens)
토큰 조회 시 (getAccessToken , getRefreshToken)
유효하지 않은 형식 → 자동 제거

13.1.3 토큰 만료 체크 (isTokenExpired)

// src/utils/jwt.ts

export function isTokenExpired(token: string): boolean {

 try {

 const decoded = jwtDecode(token) as any;

 if (!decoded || !decoded.exp) return true;

 const currentTime = Math.floor(Date.now() / 1000);

 return decoded.exp < currentTime;

 } catch {

 return true;

 }

}

검증 시점:

인증 상태 확인 시 (isUserAuthenticated , isAdminAuthenticated)
API 요청 전 (ensureValidToken)
라우트 가드 실행 시 (PrivateRoute , AdminProtectedRoute)

만료된 토큰 처리:

자동 제거 (validateAndCleanTokens)
Refresh Token으로 갱신 시도

IITP DABT Admin Frontend 설계서

78 / 82

갱신 실패 시 로그인 페이지 리다이렉트

13.2 권한 체크

13.2.1 Frontend 권한 체크 (UI 제어 목적)

파일: src/utils/auth.ts

목적: 사용자 경험(UX) 개선

권한 없는 버튼 비활성화
권한 없는 메뉴 숨김
불필요한 API 호출 방지

13.2.2 Backend 권한 체크 (실제 보안 담당)

실제 보안: Backend의 authMiddleware , adminAuthMiddleware 에서 담당

이중 검증 필요:

Frontend 권한 체크 (UX)

 │

 ▼

API 요청

 │

 ▼

Backend 권한 체크 (보안) 실제 보안

 │

 ├─ 권한 있음 → 처리

 └─ 권한 없음 → 403 Forbidden

13.2.3 이중 검증 필요성 (Frontend는 UX, Backend는 보안)

Frontend 권한 체크:

UX 개선: 권한 없는 버튼 숨김
사전 검증: 불필요한 API 호출 방지
보안 역할 아님: 우회 가능

Backend 권한 체크:

실제 보안: 서버에서 강제 검증
우회 불가능: 클라이언트에서 조작 불가
최종 검증: 모든 요청에 대해 검증

권장 사항:

Frontend: UX 개선 목적으로만 사용
Backend: 실제 보안 검증 (필수)
두 검증 모두 구현하여 UX와 보안 모두 확보

IITP DABT Admin Frontend 설계서

79 / 82

14. 부록

14.1 주요 npm 패키지 설명 (테이블 형태)

패키지 버전 카테고리 설명

 react ^18.2.0 Core UI 라이브러리

 react-dom ^18.2.0 Core React DOM 렌더링

 react-router-dom ^6.20.1 Routing SPA 라우팅

 typescript ^5.x Dev 정적 타입 체킹

 @mui/material ^5.15.0 UI Material-UI 컴포넌트

 @mui/icons-material ^5.15.0 UI Material-UI 아이콘

 @emotion/react ^11.11.1 UI CSS-in-JS (MUI 의존성)

 @emotion/styled ^11.11.0 UI Styled Components

 jwt-decode ^4.0.0 Auth JWT 토큰 디코딩

 axios ^1.11.0 HTTP HTTP 클라이언트 (실제로는 fetch 사용)

 vite ^5.0.8 Build 빌드 도구 및 개발 서버

 @vitejs/plugin-react ^4.2.1 Build Vite React 플러그인

 @iitp-dabt/common file:../packages/common Shared BE/FE 공유 코드 (검증, ErrorCode 등)

 rimraf - Dev 디렉토리 삭제 (빌드 전 정리)

14.2 공통 타입 정의
파일 목록:

파일 설명

 types/api.ts API 요청/응답 타입, ApiResponse<T> 인터페이스

 types/errorCodes.ts ErrorCode 타입 (Common 패키지 재정의)

주요 타입:

 ApiResponse<T> :

export interface ApiResponse<T = any> {

 success: boolean;

 data?: T;

 errorCode?: number;

 errorMessage?: string;

 showPopup?: boolean;

 redirectTo?: string;

 autoLogout?: boolean;

 details?: any;

}

 DataState<T> :

IITP DABT Admin Frontend 설계서

80 / 82

export type DataState<T> =

 | { status: 'loading' }

 | { status: 'success'; data: T }

 | { status: 'empty' }

 | { status: 'error'; error: string };

14.3 프로젝트 아키텍처 가이드 참조
관련 섹션:

3. 권한 체계 및 접근 제어: User/Admin 권한 구조 전체 개요
4. 시스템 연동 Flow: Client → FE → BE → DB Flow
Appendix B: Common 패키지 구조: 공유 코드 상세

Common 패키지 활용 방법:

검증 함수: isValidEmail , isValidPassword , isValidName
ErrorCode 체계: 11xxx-22xxx 범위
API URL 상수: FULL_API_URLS
관리자 역할 코드: CODE_SYS_ADMIN_ROLES

전체 시스템 연동 Flow (프로젝트 아키텍처 가이드 참조):

Client (Browser)

 │

 ▼

Frontend (React SPA)

 ├─ 토큰 검증 (JWT)

 ├─ 권한 체크 (UI 제어)

 └─ API 호출

 │

 ▼

Backend (Express API)

 ├─ 인증 체크 (authMiddleware)

 ├─ 권한 체크 (adminAuthMiddleware, 역할 검증)

 └─ 비즈니스 로직

 │

 ▼

Database (PostgreSQL)

 └─ 데이터 CRUD

14.4 Backend API 규격서 참조
각 페이지에서 사용하는 API 엔드포인트:

페이지 사용 API 상세 규격서 참조

로그인 POST /api/user/login API 규격서 - 인증 섹션

회원가입 POST /api/user/register API 규격서 - 인증 섹션

FAQ 관리 GET/POST/PUT/DELETE /api/admin/faq API 규격서 - FAQ 섹션

QnA 관리 GET/POST/PUT/DELETE /api/admin/qna API 규격서 - QnA 섹션

공지사항 관리 GET/POST/PUT/DELETE /api/admin/notice API 규격서 - 공지사항 섹션

사용자 관리 GET/POST/PUT/DELETE /api/admin/user-accounts API 규격서 - 사용자 관리 섹션

운영자 관리 GET/POST/PUT/DELETE /api/admin/account API 규격서 - 운영자 관리 섹션

IITP DABT Admin Frontend 설계서

81 / 82

페이지 사용 API 상세 규격서 참조

OpenAPI 키 관리 GET/POST/PUT/DELETE /api/admin/open-api API 규격서 - OpenAPI 섹션

코드 관리 GET/POST/PUT/DELETE /api/admin/common-code API 규격서 - 코드 관리 섹션

API 요청/응답 형식:

모든 API는 ApiResponse<T> 형식 사용
ErrorCode 기반 에러 처리
상세 내용은 API 규격서 참조

IITP DABT Admin Frontend 설계서

82 / 82

본 문서는 IITP DABT Admin Frontend 시스템의 상세 설계를 다루고 있습니다.

추가 정보:

프로젝트 아키텍처 가이드: 전체 시스템 구조 및 Common 패키지
Backend 상세 설계서: Backend API 구현 및 데이터베이스 설계
API 규격서: 모든 API 엔드포인트 상세 명세
배포 및 서버 설치 가이드: 빌드 및 배포 상세 절차

