
IITP DABT Admin 프로젝트 아키텍처

1 / 91

IITP DABT Admin

프로젝트 아키텍처

문서 버전: 1.0.0
작성일: 2025-11-07

(주)스위트케이

IITP DABT Admin 프로젝트 아키텍처

2 / 91

문서 History

버전 일자 작성자 변경 내용 비고

1.0.0 2025-11-07 (주)스위트케이 최초 작성

IITP DABT Admin 프로젝트 아키텍처

3 / 91

목차

1. 프로젝트 개요
1.1 프로젝트 소개
1.2 시스템 범위
1.3 주요 기능 요약
1.4 참고 문서

2. 시스템 아키텍처
2.1 전체 시스템 구성도
2.2 아키텍처 개요
2.3 Common 패키지
2.4 기술 스택
2.5 프로젝트 구조
2.6 패키지 간 의존성

3. 권한 체계 및 접근 제어
3.1 권한 체계 개요
3.2 관리자 역할(Role) 상세
3.3 권한별 기능 접근 매트릭스
3.4 권한 체크
3.5 Frontend 화면 접근 제어
3.6 Backend API 접근 제어
3.7 권한 체크 Flow

4. 전체 시스템 연동 Flow
4.1 사용자 로그인 Flow
4.2 관리자 로그인 Flow
4.3 토큰 갱신 Flow (Sliding Session)
4.4 권한별 API 접근 Flow
4.5 주요 기능 Flow
4.6 내부/외부 시스템 구분

5. 주요 기능 설명
5.1 사용자 기능 (User)
5.2 관리자 기능 (Admin)
5.3 시스템 관리

6. 데이터베이스 개요
6.1 주요 테이블 목록
6.2 주요 테이블 관계

IITP DABT Admin 프로젝트 아키텍처

4 / 91

6.3 핵심 테이블 개요
7. 환경 및 배포

7.1 개발 환경
7.2 배포 구조
7.3 PM2 프로세스 관리
7.4 Nginx 설정

8. 보안
8.1 인증 및 인가
8.2 데이터 보호
8.3 로깅 및 감사 (3-File Strategy)

9. 로그 확인
10. 부록

Appendix A: 용어집
Appendix B: 약어 풀이
Appendix C: 권한 체크 함수
Appendix D: 주요 환경 변수

IITP DABT Admin 프로젝트 아키텍처

5 / 91

1. 프로젝트 개요

1.1 프로젝트 소개

1.1.1 프로젝트 배경 및 목적
IITP DABT Admin은 Open API 센터 및 관리자 시스템입니다.

OpenAPI 사용 인증키 관리 및 게정 관리
콘텐츠 관리 (FAQ, Q&A, 공지사항)

1.1.2 시스템 개요
본 시스템은 다음과 같은 구성으로 이루어져 있습니다:

Client (Web Browser)

 ↓

Frontend (React SPA)

 ↓

Backend (Express API)

 ↓

Database (PostgreSQL)

1.2 시스템 범위

1.2.1 기능 범위
인증 및 계정 관리:

사용자 회원가입 및 로그인
관리자 로그인 (역할별 차등 권한)
프로필 관리

IITP DABT Admin 프로젝트 아키텍처

6 / 91

비밀번호 변경

OpenAPI 서비스:

API 인증 키 발급
키 목록 조회 및 관리
키 활성화/비활성화
키 유효기간 관리 및 연장

콘텐츠 관리:

FAQ 관리 (생성, 수정, 삭제, 조회)
Q&A 관리 (질문 접수, 답변 작성, 상태 관리)
공지사항 관리 (생성, 수정, 삭제, 게시 기간 설정)

시스템 관리:

관리자(운영자) 계정 관리
공통 코드 관리

1.2.2 기술 및 인프라 범위
프로젝트 구조:

Monorepo 구조 (Common, Backend, Frontend)
npm Workspaces 기반 패키지 관리

Backend:

Node.js 22.x 기반 Express.js API 서버
TypeScript 5.x
PostgreSQL 12.x 데이터베이스
Sequelize 6.x ORM

Frontend:

React 18.x 기반 SPA
TypeScript 5.x
Vite 5.x 빌드 도구
Material-UI 5.x UI 라이브러리

인프라:

IITP DABT Admin 프로젝트 아키텍처

7 / 91

Nginx 웹서버 (정적 파일 서빙 및 API 프록시)
PM2 프로세스 관리
Winston 로깅 시스템

1.3 주요 기능 요약

1.3.1 사용자 기능 (User)
일반 사용자 사용 가능 기능:

회원가입 및 로그인
본인 프로필 조회/수정
OpenAPI 키 발급 및 관리
FAQ 조회
Q&A 작성 및 조회
공지사항 조회

1.3.2 관리자 기능 (Admin)
관리자 사용 가능 기능:

관리자 대시보드
사용자 관리
콘텐츠 관리 (FAQ, Q&A, 공지사항)
OpenAPI 키 관리 (모든 사용자)
운영자 계정 관리 (S-ADMIN 전용)
공통 코드 관리 (S-ADMIN 전용)

1.3.3 시스템 관리 기능
시스템 운영 및 모니터링:

사용자 접근 로그 기록
데이터 변경 이력 추적
에러 로그 관리
시스템 상태 모니터링

IITP DABT Admin 프로젝트 아키텍처

8 / 91

1.4 참고 문서
IITP DABT Admin Backend 상세 설계서 : Backend 상세 설계서
IITP DABT Admin Frontend 상세 설계서 : Frontend 상세 설계서
API 규격서 : API 스펙 상세
서버 배포 및 설치 가이드 : 서버 배포/설치/실행 가이드

file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_BE%EC%83%81%EC%84%B8%EC%84%A4%EA%B3%84%EC%84%9C.pdf
file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_FE%EC%83%81%EC%84%B8%EC%84%A4%EA%B3%84%EC%84%9C.pdf
file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_API_%EA%B7%9C%EA%B2%A9%EC%84%9C.pdf
file:///C:/Work/10.Source/01.IITP_NEW/05-IITP-DABT-Admin/IITP-DABT-Admin_%EB%B0%B0%ED%8F%AC%EC%84%A4%EC%B9%98_%EA%B0%80%EC%9D%B4%EB%93%9C.pdf

IITP DABT Admin 프로젝트 아키텍처

9 / 91

2. 시스템 아키텍처

2.1 전체 시스템 구성도

┌───┐

│ Client (Web Browser) │

│ (일반 사용자 / 관리자) │

└────────────────────────────┬────────────────────────────────┘

 │ HTTPS

 ↓

┌───┐

│ Nginx Web Server │

│ - 정적 파일 서빙 (Frontend dist/) │

│ - API 프록시 (/api → Backend:30000) │

└────────────────────────────┬────────────────────────────────┘

 │

 ┌────────────┴────────────┐

 │ │

 ↓ ↓

┌───────────────────────┐ ┌───────────────────────────┐

│ Frontend (React) │ │ Backend (Express.js) │

│ - Port: 5173 (dev) │ │ - Port: 30000 │

│ - SPA │ │ - REST API │

│ - Material-UI │ │ - JWT 인증 │

│ │ │ - 비즈니스 로직 │

│ Depends on ↓ │ │ Depends on ↓ │

│ @iitp-dabt/common │ │ @iitp-dabt/common │

└───────────────────────┘ └─────────────┬─────────────┘

 │ Sequelize ORM

 ↓

 ┌─────────────────────────┐

 │ PostgreSQL Database │

 │ - Port: 5432 │

 │ - 9개 테이블 │

 └─────────────────────────┘

IITP DABT Admin 프로젝트 아키텍처

10 / 91

2.2 아키텍처 개요

2.2.1 Monorepo 구조
Monorepo 구조로 Common/BE/FE 패키지들을 하나의 저장소에서 관리합니다.

구조:

IITP-DABT-Admin/

├── packages/

│ └── common/ # 공통 패키지

├── be/ # Backend

├── fe/ # Frontend

├── script/ # 빌드/배포 스크립트

└── package.json # 루트 package.json (Workspace 설정)

2.2.2 3-Tier 아키텍처
Frontend (Presentation Layer):

사용자 인터페이스
사용자 입력 처리
상태 관리
라우팅 및 화면 접근 권한 제어

Backend (Application Layer):

REST API 제공
비즈니스 로직 처리
인증/인가
데이터 검증

Database (Data Layer):

데이터 영속성
트랜잭션 관리
데이터 무결성

IITP DABT Admin 프로젝트 아키텍처

11 / 91

2.3 Common 패키지*

2.3.1 Common 패키지 기능
BE/FE 공통 처리를 위해 Common 패키지를 사용합니다.

API 규격 정의
Single Source of Truth
검증 로직 일관성 보장
TypeScript 타입 자동 공유
에러 코드 및 권한 코드 통일
유지보수 용이

예시:

// packages/common/src/validation.ts

export function isValidEmail(email: string): boolean {

 return /^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$/.test(email);

}

// Backend에서 사용

import { isValidEmail } from '@iitp-dabt/common';

// Frontend에서 사용

import { isValidEmail } from '@iitp-dabt/common';

2.3.2 Common 패키지의 기능

2.3.2.1. 검증 로직 통일

제공 함수(예시):

IITP DABT Admin 프로젝트 아키텍처

12 / 91

isValidEmail(email: string): boolean

isValidPassword(password: string): boolean

validatePassword(password: string): { isValid: boolean; errorMessage?: string }

getPasswordStrength(password: string): 'weak' | 'medium' | 'strong'

isValidName(name: string): boolean

isValidAffiliation(affiliation: string): boolean

처리:

Backend: API 요청 검증 (Controller 단계)
Frontend: 실시간 입력 검증 (Form 컴포넌트)

목적:

사용자가 Frontend에서 입력 → Frontend 검증 통과 → Backend 전송 → Backend 검증 통과
동일한 검증 로직으로 일관성 보장

2.3.2.2. 타입 정의 공유 (types/)

API 타입 정의:

// 요청/응답 인터페이스

interface LoginRequest {

 email: string;

 password: string;

}

interface LoginResponse {

 accessToken: string;

 refreshToken: string;

 user: UserProfile;

}

interface ApiResponse<T> {

 result: 'ok' | 'error';

 data?: T;

 message?: string;

 errorCode?: number;

}

IITP DABT Admin 프로젝트 아키텍처

13 / 91

처리:

Backend: Controller에서 요청/응답 타입 정의
Frontend: API 함수에서 요청/응답 타입 정의

목적:

TypeScript 컴파일 타임에 타입 불일치 자동 감지
API 스펙 변경 시 BE/FE 동시 반영

2.3.2.3. 에러 코드 통일 (errorCodes.ts)

에러 코드 체계:

enum ErrorCode {

 // 기본 에러 (11xxx)

 UNKNOWN_ERROR = 11000,

 VALIDATION_ERROR = 11001,

 DATABASE_ERROR = 11002,

 // 인증 관련 (14xxx)

 UNAUTHORIZED = 14000,

 TOKEN_EXPIRED = 14003,

 FORBIDDEN = 14008,

 // 사용자 관련 (16xxx)

 USER_NOT_FOUND = 16000,

 // FAQ 관련 (22xxx)

 FAQ_NOT_FOUND = 22000,

 FAQ_CREATE_FAILED = 22001,

 // ...

}

에러 메시지 매핑:

IITP DABT Admin 프로젝트 아키텍처

14 / 91

const ErrorMetaMap: Record<ErrorCode, ErrorMeta> = {

 [ErrorCode.TOKEN_EXPIRED]: {

 message: '세션이 만료되었습니다. 다시 로그인해주세요.',

 statusCode: 401

 },

 // ...

}

2.3.2.4. 권한 코드

권한 코드:

// 관리자 역할 코드

const CODE_SYS_ADMIN_ROLES = {

 SUPER_ADMIN: 'S-ADMIN', // 최고 관리자

 ADMIN: 'ADMIN', // 관리자

 EDITOR: 'EDITOR', // 에디터

 VIEWER: 'VIEWER' // 뷰어

}

// 공통 코드 그룹

const COMMON_CODE_GROUPS = {

 SYS_ADMIN_ROLES: 'sys_admin_roles',

 FAQ_TYPE: 'faq_type',

 QNA_TYPE: 'qna_type',

 NOTICE_TYPE: 'notice_type'

}

IITP DABT Admin 프로젝트 아키텍처

15 / 91

2.3.3 의존성 구조

┌─────────────────────────────┐

│ packages/common │

│ (순수 TypeScript) │

│ - 외부 의존성 없음 │

└──────────────┬──────────────┘

 │ npm run build

 ↓

 dist/ 생성 (JavaScript + .d.ts)

 │

 ┌──────────┴──────────┐

 ↓ ↓

┌─────────┐ ┌─────────┐

│ Backend │ │Frontend │

│ import │ │ import │

└─────────┘ └─────────┘

빌드 순서:

1. packages/common 빌드 → dist/ 생성
2. be 빌드 → @iitp-dabt/common import
3. fe 빌드 → @iitp-dabt/common import

2.4 기술 스택

2.4.1 Common (공통 패키지)

기술 버전 용도

TypeScript 5.8.3 타입 안정성, 타입 정의

npm - 패키지 관리

외부 의존성 없음 (순수 TypeScript)
BE/FE 모두에서 사용

IITP DABT Admin 프로젝트 아키텍처

16 / 91

2.4.2 Backend

기술 버전 용도

Runtime Node.js 22.x JavaScript 실행 환경

Framework Express.js 4.18.2 웹 프레임워크

Language TypeScript 5.8.3 타입 안전 개발

Database PostgreSQL 12.x 관계형 데이터베이스

ORM Sequelize 6.35.2 데이터베이스 ORM

Authentication jsonwebtoken 9.0.2 JWT 토큰 생성/검증

Password bcrypt 5.1.1 비밀번호 해싱

Logging Winston 3.17.0 구조화된 로깅

winston-daily-rotate-file 5.0.0 일별 로그 로테이션

Environment dotenv 17.2.2 환경 변수 관리

CORS cors 2.8.5 CORS 설정

2.4.3 Frontend

기술 버전 용도

Framework React 18.2.0 UI 라이브러리

Language TypeScript 5.8.3 타입 안전 개발

Build Tool Vite 5.0.8 빌드 도구 (HMR, 빠른 빌드)

UI Library Material-UI 5.15.0 UI 컴포넌트 라이브러리

Routing React Router DOM 6.20.1 클라이언트 라우팅

HTTP Client axios 1.11.0 HTTP 요청

JWT Decode jwt-decode 4.0.0 JWT 토큰 파싱

IITP DABT Admin 프로젝트 아키텍처

17 / 91

기술 버전 용도

Styling @emotion/react 11.11.1 CSS-in-JS

IITP DABT Admin 프로젝트 아키텍처

18 / 91

2.5 프로젝트 구조

05-IITP-DABT-Admin/

│

├── packages/

│ └── common/ # 공통 패키지 (@iitp-dabt/common)

│ ├── src/

│ │ ├── types/ # 타입 정의

│ │ │ ├── api/ # API 타입

│ │ │ └── errorCodes.ts

│ │ ├── validation.ts # 검증 함수

│ │ └── index.ts

│ ├── dist/ # 빌드 결과물

│ └── package.json

│

├── be/ # Backend

│ ├── src/

│ │ ├── controllers/ # API 컨트롤러

│ │ ├── services/ # 비즈니스 로직

│ │ ├── repositories/ # 데이터 접근

│ │ ├── models/ # Sequelize 모델

│ │ ├── routes/ # 라우터

│ │ ├── middleware/ # 미들웨어

│ │ ├── utils/ # 유틸리티

│ │ └── index.ts # 진입점

│ ├── dist/ # 빌드 결과물

│ ├── logs/ # 로그 파일

│ ├── scripts/ # 빌드 스크립트

│ └── package.json

│

├── fe/ # Frontend

│ ├── src/

│ │ ├── api/ # API 호출 함수

│ │ ├── components/ # React 컴포넌트

│ │ ├── pages/ # 페이지 컴포넌트

│ │ ├── hooks/ # 커스텀 훅

│ │ ├── store/ # 상태 관리

│ │ ├── utils/ # 유틸리티

│ │ ├── routes/ # 라우팅

│ │ ├── theme/ # 테마 설정

│ │ ├── App.tsx # 메인 앱

│ │ └── main.tsx # 진입점

IITP DABT Admin 프로젝트 아키텍처

19 / 91

│ ├── dist/ # 빌드 결과물

│ ├── public/ # 정적 파일

│ └── package.json

│

├── script/ # 빌드/배포 스크립트

│ ├── build-server.js # 서버 빌드

│ ├── deploy-server.js # 서버 배포

│ └── ...

│

└── package.json # 루트 (Workspace 설정)

2.6 패키지 간 의존성

의존성 그래프

 @iitp-dabt/common

 (공통 패키지)

 │

 │ file:../packages/common

 ┌────────┴────────┐

 ↓ ↓

 Backend Frontend

 (be/package.json) (fe/package.json)

Workspace 설정
루트 package.json:

{

 "workspaces": ["fe", "be", "packages/common"]

}

목적:

공통 node_modules 공유

IITP DABT Admin 프로젝트 아키텍처

20 / 91

의존성 중복 제거
일관된 버전 관리
 npm install 한 번으로 전체 설치

빌드 의존성

1. packages/common 빌드 필수

 ↓

2. be 빌드 (common에 의존)

 ↓

3. fe 빌드 (common에 의존)

빌드 명령어:

전체 빌드 (순서대로)

npm run build:common

npm run build:be

npm run build:fe

또는 통합 빌드

npm run build

IITP DABT Admin 프로젝트 아키텍처

21 / 91

3. 권한 체계 및 접근 제어

3.1 권한 체계 개요

3.1.1 2단계 권한 구조
본 시스템은 2단계 권한 구조를 사용합니다:

1차: 사용자 타입 (userType)

 ├─ 'U' (User): 일반 사용자

 └─ 'A' (Admin): 관리자

 │

 ↓

 2차: 관리자 역할 (role)

 ├─ S-ADMIN: 최고 관리자

 ├─ ADMIN: 관리자

 ├─ EDITOR: 에디터

 └─ VIEWER: 뷰어

3.1.2 JWT 토큰 구조

// 일반 사용자 토큰

{

 userId: 123,

 userType: 'U',

 iat: 1699999999,

 exp: 1700000899

}

// 관리자 토큰

{

 userId: 456,

 userType: 'A',

 role: 'S-ADMIN', // ← 관리자인 경우만 role 포함

 iat: 1699999999,

 exp: 1700000899

}

IITP DABT Admin 프로젝트 아키텍처

22 / 91

3.2 관리자 역할(Role) 상세

3.2.1 S-ADMIN (최고 관리자)
역할 코드: S-ADMIN (CODE_SYS_ADMIN_ROLES.SUPER_ADMIN)

권한 레벨: Super Admin (최상위)

주요 권한:

모든 관리 기능 접근 가능
운영자 계정 관리 (생성/수정/삭제/역할 변경)
공통 코드 관리 (시스템 설정 코드)
사용자 관리
콘텐츠 관리 (FAQ, Q&A, 공지사항)
시스템 설정

접근 가능 페이지:

 /admin/operators - 운영자 관리
 /admin/code - 공통 코드 관리
 /admin/users - 사용자 관리
 /admin/faqs , /admin/qnas , /admin/notices - 콘텐츠 관리
기타 모든 관리자 페이지

3.2.2 ADMIN (관리자)
역할 코드: ADMIN

권한 레벨: Admin

주요 권한:

사용자 관리 (일반 사용자 계정)
콘텐츠 관리 (FAQ, Q&A, 공지사항)
OpenAPI 키 관리 (전체 사용자)

IITP DABT Admin 프로젝트 아키텍처

23 / 91

운영자 계정 관리 불가
공통 코드 관리 불가

접근 가능 페이지:

 /admin/users - 사용자 관리
 /admin/faqs , /admin/qnas , /admin/notices - 콘텐츠 관리
 /admin/openapi - OpenAPI 관리
 /admin/operators - 접근 불가 (메뉴 숨김)
 /admin/code - 접근 불가 (메뉴 숨김)

3.2.3 EDITOR (에디터)
역할 코드: EDITOR

권한 레벨: 편집가능 (중간)

주요 권한:

콘텐츠 편집 (FAQ, Q&A, 공지사항 생성/수정/삭제)
콘텐츠 조회
사용자 조회 (편집 불가)
사용자 생성/수정/삭제 불가
운영자 관리 불가

접근 가능 페이지:

 /admin/faqs , /admin/qnas , /admin/notices - 콘텐츠 편집 가능
 /admin/users - 조회만 (생성/수정/삭제 버튼 숨김)

3.2.4 VIEWER (뷰어)
역할 코드: VIEWER

권한 레벨: 조회만 가능 (최하위)

주요 권한:

모든 데이터 조회만 가능

IITP DABT Admin 프로젝트 아키텍처

24 / 91

생성/수정/삭제 모두 불가

접근 가능 페이지:

모든 관리자 페이지 접근 가능
모든 생성/수정/삭제 버튼 숨김

3.3 권한별 기능 접근 매트릭스

3.3.1 전체 권한 매트릭스

기능 영역 세부 기능 User VIEWER EDITOR ADMIN S-ADMIN

프로필 본인 프로필 조회/수정 ✓ ✓ ✓ ✓ ✓

OpenAPI 본인 키 관리 ✓ - - - -

전체 키 조회 - ✓ ✓ ✓ ✓

전체 키 관리 - - - ✓ ✓

FAQ 조회 ✓ ✓ ✓ ✓ ✓

생성/수정/삭제 - - ✓ ✓ ✓

QNA 조회 (본인) ✓ - - - -

생성 (본인) ✓ - - - -

조회 (전체) - ✓ ✓ ✓ ✓

답변 작성 - - ✓ ✓ ✓

공지사항 조회 ✓ ✓ ✓ ✓ ✓

생성/수정/삭제 - - ✓ ✓ ✓

사용자 관리 조회 - ✓ ✓ ✓ ✓

생성/수정/삭제 - - - ✓ ✓

IITP DABT Admin 프로젝트 아키텍처

25 / 91

기능 영역 세부 기능 User VIEWER EDITOR ADMIN S-ADMIN

운영자 관리 조회 - - - - ✓

생성/수정/삭제 - - - - ✓

역할 변경 - - - - ✓

코드 관리 조회 - - - - ✓

생성/수정/삭제 - - - - ✓

3.4 권한 체크

3.4.1 Backend API 권한 체크

기능 Backend 체크 방식 실제 접근 가능 역할

운영자 관리 isSAdmin() 명시적 체크 S-ADMIN만

코드 관리
 checkSuperRole() 명시적
체크

S-ADMIN만

사용자 관리 isAdmin() 체크
모든 Admin (S-ADMIN, ADMIN, EDITOR,
VIEWER)

FAQ 관리 adminAuthMiddleware 만 모든 Admin

QNA 관리 adminAuthMiddleware 만 모든 Admin

공지사항

관리
 adminAuthMiddleware 만 모든 Admin

3.4.2 Frontend UI 권한 제어

기능 Frontend 체크 함수 UI 제어

운영자 관리 hasAccountManagementPermission() S-ADMIN만 메뉴/버튼 표시

코드 관리 hasAccountManagementPermission() S-ADMIN만 메뉴/버튼 표시

IITP DABT Admin 프로젝트 아키텍처

26 / 91

기능 Frontend 체크 함수 UI 제어

사용자 관리 hasUserAccountEditPermission() ADMIN, S-ADMIN만 버튼 표시

FAQ 관리 hasContentEditPermission() EDITOR 이상만 버튼 표시

QNA 관리 hasContentEditPermission() EDITOR 이상만 버튼 표시

공지사항 관리 hasContentEditPermission() EDITOR 이상만 버튼 표시

3.5 Frontend 화면 접근 제어

3.5.1 라우트 가드 (Route Guard)

3.5.1.1 일반 사용자 화면 접근 제어

동작:

로그인 여부 확인
토큰 유효성 검사
미인증 시 → 로그인 페이지로 자동 이동

체크 로직:

1. 로컬 저장소에서 토큰 확인
2. 토큰 만료 여부 확인
3. 실패 시 로그인 페이지로 리다이렉트

적용 페이지:

 /dashbd - 대시보드
 /profile - 프로필 관리
 /user/openapi - OpenAPI 키 관리
기타 사용자 전용 페이지

IITP DABT Admin 프로젝트 아키텍처

27 / 91

3.5.1.2 관리자 화면 제어

동작:

관리자 로그인 여부 확인
관리자 타입(userType='A') 확인
미인증 시 → 관리자 로그인 페이지로 자동 이동

체크 로직:

1. 로컬 저장소에서 관리자 토큰 확인
2. userType이 'A'인지 확인
3. 실패 시 관리자 로그인 페이지로 리다이렉트

적용 페이지:

 /admin/dashbd - 관리자 대시보드
 /admin/users - 사용자 관리
 /admin/faqs - FAQ 관리
기타 모든 관리자 페이지

3.5.2 역할별 UI 제어

3.5.2.1 메뉴 표시/숨김

S-ADMIN 전용 메뉴:

운영자 관리 메뉴
공통 코드 관리 메뉴
→ S-ADMIN 역할만 메뉴 표시

ADMIN 이상 메뉴:

사용자 관리 메뉴
→ ADMIN, S-ADMIN만 메뉴 표시

EDITOR 이상 메뉴:

콘텐츠 관리 메뉴 (FAQ, Q&A, 공지사항)
→ EDITOR, ADMIN, S-ADMIN 메뉴 표시

IITP DABT Admin 프로젝트 아키텍처

28 / 91

모든 관리자 메뉴:

대시보드

조회 관련 메뉴
→ VIEWER 포함 모든 역할 표시

3.5.2.2 버튼/액션 활성화 제어

생성/수정/삭제 버튼:

콘텐츠 관련: EDITOR 이상만 표시
사용자 관리: ADMIN 이상만 표시
운영자 관리: S-ADMIN만 표시

조회 버튼:

모든 역할에게 표시

실제 적용 예시:

FAQ 목록 페이지: VIEWER는 목록만 보임, EDITOR는 "생성" 버튼도 보임
사용자 관리 페이지: EDITOR는 목록만 보임, ADMIN은 "사용자 추가" 버튼도 보임
운영자 관리 페이지: S-ADMIN만 페이지 자체가 보임

IITP DABT Admin 프로젝트 아키텍처

29 / 91

3.5.3 페이지 접근 제어 Flow

[사용자가 페이지 접근 시도]

 ↓

[라우트 가드 체크]

 - 로그인 필요 여부 확인

 - 관리자 권한 필요 여부 확인

 ↓

미인증 → [해당 로그인 페이지로 이동]

 ↓

인증 완료 → [페이지 렌더링]

 ↓

 [역할 확인]

 - 관리자인 경우 역할(role) 추출

 ↓

 [역할별 UI 제어]

 - 메뉴 표시/숨김

 - 버튼 활성화/비활성화

 - 특정 영역 접근 제어

(구체적 내용은 Frontend 상세 설계서 참조)

3.6 Backend API 접근 제어

3.6.1 미들웨어 체계

3.6.1.1 기본 인증 미들웨어

기능: JWT 토큰 검증 및 사용자 정보 추출

처리 흐름:

IITP DABT Admin 프로젝트 아키텍처

30 / 91

1. 요청 헤더에서 토큰 추출

2. JWT 서명 검증

3. 토큰 만료 여부 확인

4. 사용자 정보 추출 및 저장

 - 사용자 ID

 - 사용자 타입 (User/Admin)

 - 관리자인 경우 역할(role)

5. Sliding Session 처리

 - 만료 2분 전이면 새 토큰 생성

 - 응답 헤더에 포함

에러 처리:

토큰 없음 → 401 에러
토큰 만료 → 401 에러 (로그 기록)
토큰 무효 → 401 에러

3.6.1.2 관리자 인증 미들웨어

기능: 관리자 권한 확인

처리 흐름:

1. 기본 인증 미들웨어 실행

2. 사용자 타입이 'A'(Admin)인지 확인

3. Admin 아니면 → 403 Forbidden

4. Admin이면 → 다음 단계 진행

적용 대상:

 /api/admin/* 모든 관리자 API

3.6.2 세부 권한 체크

3.6.2.1 Controller 단계에서 역할 체크

S-ADMIN 전용 API:

IITP DABT Admin 프로젝트 아키텍처

31 / 91

운영자 계정 관리
공통 코드 관리
→ S-ADMIN 역할 확인, 아니면 403 에러

ADMIN 이상 API:

사용자 관리
→ ADMIN, S-ADMIN만 허용

EDITOR 이상 API (설계 의도):

FAQ, Q&A, 공지사항 생성/수정/삭제
→ EDITOR, ADMIN, S-ADMIN 허용 예정

모든 Admin API (현재 구현):

FAQ, Q&A, 공지사항 관리
→ 관리자 인증만 체크 (역할 체크 없음)

(구체적 구현은 Backend 상세 설계서 참조)

IITP DABT Admin 프로젝트 아키텍처

32 / 91

3.7 권한 체크 Flow

3.7.1 전체 권한 체크 흐름

[Client 요청]

 ↓

[Frontend 라우트 가드]

 - PrivateRoute: isUserAuthenticated()

 - AdminProtectedRoute: isAdminAuthenticated()

 ↓

 인증 실패 → [로그인 페이지 리다이렉트]

 ↓

 인증 성공 → [페이지 렌더링]

 ↓

 [역할별 UI 제어]

 - getAdminRole()

 - hasXxxPermission()

 - 메뉴/버튼 표시 여부 결정

 ↓

 [API 호출]

 - Authorization: Bearer <token>

 ↓

 [Backend authMiddleware]

 - JWT 검증

 - userType 확인

 ↓

 User → [User API 처리]

 ↓

 Admin → [adminAuthMiddleware]

 - userType === 'A' 확인

 ↓

 [Controller에서 세부 권한 체크]

 - isSAdmin(role) ← 운영자/코드 관리

 - isAdmin(role) ← 사용자 관리

 - (현재) FAQ/QNA는 체크 없음

 ↓

 권한 부족 → [403 Forbidden]

 ↓

 권한 충족 → [Service → Repository → DB]

IITP DABT Admin 프로젝트 아키텍처

33 / 91

IITP DABT Admin 프로젝트 아키텍처

34 / 91

4. 전체 시스템 연동 Flow

4.1 사용자 로그인 Flow

[사용자]

 ↓

[/login 페이지 접속]

 ↓

[이메일/비밀번호 입력]

 ↓

[Frontend 검증]

 - isValidEmail() ← Common 패키지

 - isValidPassword() ← Common 패키지

 ↓

검증 실패 → [에러 메시지 표시]

 ↓

검증 성공 → [POST /api/auth/login]

 ↓

 [Backend authController]

 1. open_api_user 테이블 조회 (loginId)

 2. bcrypt.compare(입력 password, DB password)

 3. 비밀번호 일치 확인

 ↓

 실패 → [401 LOGIN_FAILED]

 ↓

 성공 → [JWT 토큰 생성]

 - Access Token (15분)

 { userId, userType: 'U', ... }

 - Refresh Token (7일)

 ↓

 [sys_log_user_access 기록]

 - log_type: 'LOGIN'

 - act_result: 'S'

 - ip_addr, user_agent

 ↓

 [응답]

 {

 result: 'ok',

 data: {

 accessToken: '...',

 refreshToken: '...',

IITP DABT Admin 프로젝트 아키텍처

35 / 91

 user: { ... }

 }

 }

 ↓

 [Frontend]

 1. LocalStorage에 토큰 저장

 2. 사용자 정보 저장

 3. 대시보드로 이동 (/dashbd)

IITP DABT Admin 프로젝트 아키텍처

36 / 91

4.2 관리자 로그인 Flow

[관리자]

 ↓

[/admin/login 페이지 접속]

 ↓

[이메일/비밀번호 입력]

 ↓

[Frontend 검증]

 - isValidEmail()

 - isValidPassword()

 ↓

[POST /api/auth/admin/login]

 ↓

[Backend adminAuthController]

 1. sys_adm_account 테이블 조회

 - loginId로 조회

 - status='A', del_yn='N' 확인

 2. bcrypt.compare(입력 password, DB password)

 3. 비밀번호 일치 확인

 ↓

 실패 → [401 LOGIN_FAILED]

 ↓

 성공 → [JWT 토큰 생성]

 - Access Token (15분)

 {

 userId: admId,

 userType: 'A',

 role: 'S-ADMIN' | 'ADMIN' | 'EDITOR' | 'VIEWER'

 }

 - Refresh Token (7일)

 ↓

 [sys_log_user_access 기록]

 - user_type: 'A'

 - log_type: 'LOGIN'

 - act_result: 'S'

 ↓

 [응답]

 {

 result: 'ok',

 data: {

 accessToken: '...',

IITP DABT Admin 프로젝트 아키텍처

37 / 91

 refreshToken: '...',

 admin: {

 admId: ...,

 name: '...',

 role: 'S-ADMIN',

 roleName: '최고 관리자'

 }

 }

 }

 ↓

[Frontend]

 1. LocalStorage에 admin_access_token, admin_refresh_token 저장

 2. 관리자 정보 및 role 저장

 3. 역할에 따른 메뉴 표시 결정

 - S-ADMIN → 모든 메뉴 표시

 - ADMIN → 운영자 관리/코드 관리 제외

 - EDITOR → 사용자 관리 버튼 제외

 - VIEWER → 모든 편집 버튼 숨김

 4. 관리자 대시보드로 이동 (/admin/dashbd)

4.3 토큰 재발급 메커니즘
본 시스템은 2가지 방식으로 토큰을 재발급하여 사용자 로그인 상태를 유지합니다.

4.3.1 Sliding Session (자동 갱신)
재발급 조건:

Access Token 만료까지 2분 미만 남았을 때
사용자가 API를 호출하는 시점에 자동 감지

동작 방식:

IITP DABT Admin 프로젝트 아키텍처

38 / 91

[사용자가 API 호출]

 (예: 대시보드 조회, FAQ 목록 조회 등)

 ↓

[Backend에서 토큰 만료 시간 확인]

 - 현재 시각과 만료 시각 비교

 - 남은 시간 계산

 ↓

남은 시간 > 2분 → [토큰 갱신 없이 정상 처리]

 ↓

남은 시간 ≤ 2분 → [자동 토큰 갱신]

 1. 새 Access Token 생성

 2. 응답 헤더에 포함하여 전달

 3. Frontend에서 자동으로 저장

 ↓

 [사용자는 인지 못함]

 [로그인 상태 유지]

장점:

사용자 경험 향상 (끊김 없는 사용)
보안 유지 (짧은 Access Token 만료 시간)
별도 API 호출 불필요

4.3.2 Refresh Token (명시적 재발급)
재발급 조건:

Access Token이 완전히 만료되었을 때 (15분 경과)
Sliding Session을 놓친 경우 (사용자가 오랫동안 비활성)
Backend가 401 에러 응답 시

동작 방식:

IITP DABT Admin 프로젝트 아키텍처

39 / 91

[사용자가 API 호출]

 ↓

[Backend: Access Token 만료 확인]

 ↓

[401 에러 응답]

 ↓

[Frontend에서 401 감지]

 ↓

[Refresh Token 확인]

 - LocalStorage에서 Refresh Token 추출

 - Refresh Token 유효 기간 확인 (7일)

 ↓

Refresh Token 만료 → [자동 로그아웃]

 [로그인 페이지로 이동]

 ↓

Refresh Token 유효 → [토큰 재발급 요청]

 1. Refresh Token 전송

 2. 새 Access Token + 새 Refresh Token 받음

 3. LocalStorage 업데이트

 4. 원래 실패한 API 자동 재시도

 ↓

 [사용자는 인지 못함]

 [로그인 상태 유지]

추가 사항:

Refresh Token도 함께 갱신 (Rolling Refresh)
최대 7일간 로그인 유지 가능
Refresh Token 만료 시에만 재로그인 필요

4.3.3 두 방식 비교 및 우선순위

구분 Sliding Session Refresh Token

발동 조건 만료 2분 전 만료 후 (401 에러)

호출 시점 모든 API 호출 시 자동 확인 401 에러 발생 시

우선순위 1순위 (먼저 동작) 2순위 (Sliding 놓쳤을 때)

추가 API 불필요 (응답 헤더 이용) 필요 (토큰 재발급 API)

IITP DABT Admin 프로젝트 아키텍처

40 / 91

구분 Sliding Session Refresh Token

사용자 인지 없음 없음 (자동 처리)

네트워크 부담 낮음 약간 있음 (추가 요청)

[실제 시나리오]:

시나리오 1) 활발히 사용 중 (Sliding Session)

로그인 → 13분 경과 → API 호출 → 자동 갱신 → 계속 사용

 → 13분 경과 → API 호출 → 자동 갱신 → 계속 사용

 (무한 반복, 7일까지)

시나리오 2) 오랫동안 방치 (Refresh Token)

로그인 → 20분 방치 → API 호출 → 401 에러 → Refresh Token 사용 → 새 토큰 발급 → 계속 사용

시나리오 3) 7일 경과 (재로그인 필요)

마지막 사용 → 7일 경과 → API 호출 → 401 에러 → Refresh Token도 만료 → 로그아웃 → 로그인 페이지

IITP DABT Admin 프로젝트 아키텍처

41 / 91

4.4 권한별 API 접근 Flow

4.4.1 S-ADMIN 전용 API 접근

[S-ADMIN 관리자]

 ↓

[POST /api/admin/admin-accounts (운영자 생성)]

 Authorization: Bearer <admin_token>

 ↓

[Backend adminAuthMiddleware]

 - userType === 'A' 확인 ✓

 ↓

[Controller: createAdminAccount]

 - getAdminRole(req) → 'S-ADMIN'

 - isSAdmin(role) 체크

 ↓

 role !== 'S-ADMIN' → [403 FORBIDDEN]

 ↓

 role === 'S-ADMIN' → [Service 실행]

 ↓

 [운영자 계정 생성]

 ↓

 [sys_log_change_his 기록]

 ↓

 [200 OK 응답]

IITP DABT Admin 프로젝트 아키텍처

42 / 91

4.4.2 일반 Admin API 접근

[VIEWER 관리자]

 ↓

[POST /api/admin/faq (FAQ 생성)]

 Authorization: Bearer <admin_token>

 ↓

[Backend adminAuthMiddleware]

 - userType === 'A' 확인

 ↓

[Controller: createFaqForAdmin]

 - 세부 role 체크 없음

 ↓

[Service 실행] ← VIEWER도 접근 가능 (주의!)

 ↓

[FAQ 생성 성공]

IITP DABT Admin 프로젝트 아키텍처

43 / 91

4.5 주요 기능 Flow

4.5.1 사용자 회원가입 Flow

[/register 페이지]

 ↓

[이메일, 비밀번호, 이름, 소속 입력]

 ↓

[Frontend 실시간 검증]

 - isValidEmail()

 - validatePassword() → 에러 메시지

 - isValidName()

 - isValidAffiliation()

 ↓

[POST /api/auth/register]

 {

 loginId: 'user@example.com',

 password: 'Password123!',

 name: '홍길동',

 affiliation: 'IITP'

 }

 ↓

[Backend]

 1. 이메일 중복 확인

 - open_api_user.loginId 조회

 - 이미 있으면 → 409 EMAIL_ALREADY_EXISTS

 2. Common 패키지 검증

 - isValidEmail()

 - isValidPassword()

 3. bcrypt 해싱

 - password → hashedPassword

 4. DB 저장

 - open_api_user 테이블에 INSERT

 - status='A', del_yn='N'

 5. 자동 로그인

 - JWT 토큰 생성

 6. sys_log_user_access 기록

 ↓

[응답: Access Token + Refresh Token]

 ↓

[Frontend]

IITP DABT Admin 프로젝트 아키텍처

44 / 91

 - 토큰 저장

 - 대시보드로 이동

4.5.2 OpenAPI 키 발급 Flow

[사용자 대시보드]

 ↓

[/user/openapi 페이지]

 ↓

[키 발급 신청 버튼 클릭]

 ↓

[키 이름, 설명, 유효기간 입력]

 ↓

[POST /api/user/openapi/keys]

 Authorization: Bearer <user_token>

 {

 keyName: '테스트 API',

 keyDesc: '개발용',

 startDt: '2024-01-01',

 endDt: '2024-12-31'

 }

 ↓

[Backend]

 1. authMiddleware: userId 추출

 2. API 키 생성

 - authKeyGenerator.generate() → 랜덤 키

 - 형식: "xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx"

 3. DB 저장

 - open_api_auth_key 테이블에 INSERT

 - user_id, auth_key, active_yn='Y'

 4. open_api_user 업데이트

 - latest_key_created_at 갱신

 5. sys_log_change_his 기록

 ↓

[응답: { keyId, authKey }]

 ↓

[Frontend]

 - 키 목록 갱신

 - 성공 메시지 표시

 - 키 복사 기능 제공

IITP DABT Admin 프로젝트 아키텍처

45 / 91

4.5.3 FAQ 관리 Flow (관리자)

[EDITOR 관리자]

 ↓

[/admin/faqs 페이지]

 ↓

[FAQ 목록 조회]

 - hasContentEditPermission(role) → true

 - "생성" 버튼 표시 ✓

 ↓

[생성 버튼 클릭]

 ↓

[/admin/faqs/create 페이지]

 ↓

[질문, 답변, FAQ 타입 입력]

 ↓

[POST /api/admin/faq]

 Authorization: Bearer <admin_token>

 {

 question: '자주 묻는 질문',

 answer: '답변 내용',

 faqType: 'general'

 }

 ↓

[Backend]

 1. adminAuthMiddleware: userType='A' 확인 ✓

 2. Controller (현재는 role 체크 없음)

 3. Service: FAQ 생성

 - sys_faq 테이블에 INSERT

 - created_by = actorTag ('A:456')

 4. sys_log_change_his 기록

 ↓

[응답: { faqId }]

 ↓

[Frontend]

 - FAQ 목록으로 이동

 - 성공 메시지 표시

IITP DABT Admin 프로젝트 아키텍처

46 / 91

4.5.4 Q&A 관리 Flow

4.5.4.1 사용자: Q&A 작성

[일반 사용자]

 ↓

[/user/qna/create]

 ↓

[제목, 내용, 유형 입력]

 ↓

[POST /api/user/qna]

 Authorization: Bearer <user_token>

 ↓

[Backend]

 1. authMiddleware: userId 추출

 2. sys_qna 테이블에 INSERT

 - user_id, title, content

 - answered_yn='N' (미답변)

 - secret_yn (비공개 여부)

 3. sys_log_change_his 기록

 ↓

[Q&A 생성 완료]

IITP DABT Admin 프로젝트 아키텍처

47 / 91

4.5.4.2 관리자: Q&A 답변

[EDITOR 관리자]

 ↓

[/admin/qnas 목록]

 - 미답변 Q&A 조회

 ↓

[Q&A 상세 조회]

 ↓

[답변 작성 버튼]

 - hasContentEditPermission(role) → true

 ↓

[답변 내용 입력]

 ↓

[POST /api/admin/qna/:qnaId/reply]

 {

 reply: '답변 내용'

 }

 ↓

[Backend]

 1. sys_qna 업데이트

 - answer_content = reply

 - answered_yn = 'Y'

 - answered_by = actorTag

 - answered_at = NOW()

 2. sys_log_change_his 기록

 ↓

[답변 완료]

 ↓

[Frontend]

 - 목록으로 이동

 - 상태 "답변 완료"로 표시

IITP DABT Admin 프로젝트 아키텍처

48 / 91

4.6 내부/외부 시스템 구분

4.6.1 IITP Platform 기준 시스템 구분

┌──┐

│ IITP Platform (내부) │

│ │

│ ┌──┐ │

│ │ IITP DABT Admin (본 시스템) │ │

│ │ │ │

│ │ ┌─────────────┐ ┌──────────────┐ │ │

│ │ │ Frontend │ │ Backend │ │ │

│ │ │ (React) │ │ (Express) │ │ │

│ │ └─────────────┘ └──────┬───────┘ │ │

│ │ │ │ │

│ │ ┌─────┴──────┐ │ │

│ │ │ PostgreSQL │ │ │

│ │ └────────────┘ │ │

│ └──┘ │

│ │

└──┘

 │

 ┌───────────┴───────────┐

 ↓ ↓

┌───────────────────┐ ┌──────────────────┐

│ 외부 사용자 │ │ 외부 시스템 │

│ (Web Browser) │ │ (API Client) │

│ - 일반 사용자 │ │ - OpenAPI 호출 │

│ - 관리자 │ │ │

└───────────────────┘ └──────────────────┘

4.6.2 내부 시스템 간 연동
Frontend ↔ Backend: REST API
Backend ↔ Database: Sequelize ORM
단일 시스템 (Monolithic)

IITP DABT Admin 프로젝트 아키텍처

49 / 91

5. 주요 기능 설명

5.1 사용자 기능 (User)

5.1.1 회원가입 및 로그인
회원가입:

이메일 기반 회원가입
비밀번호 규칙: 8자 이상, 영문/숫자/특수문자 포함
이름: 2-50자 (한글/영문/숫자/공백)
소속: 2-100자
자동 로그인 (회원가입 즉시 토큰 발급)

로그인:

JWT 기반 인증
Access Token: 15분
Refresh Token: 7일
자동 토큰 갱신 (Sliding Session)

보안:

비밀번호 bcrypt 해싱 (salt rounds: 10)
로그인 시도 기록 (성공/실패 모두)
IP 주소 및 User Agent 기록

5.1.2 프로필 관리
조회:

본인 정보 조회
이메일, 이름, 소속, 가입일

수정:

IITP DABT Admin 프로젝트 아키텍처

50 / 91

이름 수정
소속 수정
이메일 변경 불가 (로그인 ID)

비밀번호 변경:

현재 비밀번호 확인 필수
새 비밀번호 검증
변경 이력 기록

5.1.3 OpenAPI 키 관리
키 발급:

키 이름: 1-120자
키 설명: 1-600자 (사용 목적)
유효 기간 설정 (시작일, 종료일)
즉시 활성화 (active_yn='Y')

키 목록:

본인이 발급받은 키만 조회
키 상태 표시 (활성/비활성/만료)
최근 사용 일시

키 관리:

키 활성화/비활성화
키 유효기간 연장 (관리자 승인)
키 삭제 (논리 삭제)

5.1.4 FAQ/QNA/공지사항
FAQ 조회:

카테고리별 필터링
검색 기능
조회수 표시

IITP DABT Admin 프로젝트 아키텍처

51 / 91

Q&A 작성:

질문 작성
비공개 설정 가능
답변 알림 (답변 완료 시)

공지사항 조회:

중요 공지사항 상단 고정
게시 기간 표시
공개/비공개 구분

5.2 관리자 기능 (Admin)

5.2.1 콘텐츠 관리

5.2.1.1 FAQ 관리 (EDITOR 이상)

목록 조회:

모든 FAQ 조회 (페이징)
카테고리 필터
사용 여부 필터 (use_yn)

생성/수정/삭제:

질문/답변 입력
FAQ 타입 선택 (faq_type)
정렬 순서 설정
사용 여부 설정

Frontend UI:

 hasContentEditPermission() 체크
EDITOR, ADMIN, S-ADMIN만 버튼 표시

Backend API:

IITP DABT Admin 프로젝트 아키텍처

52 / 91

 adminAuthMiddleware 체크
role 체크

5.2.1.2 Q&A 관리 (EDITOR 이상)

목록 조회:

모든 Q&A 조회
상태별 필터 (미답변/답변완료)
비공개 Q&A 포함

답변 작성:

답변 내용 입력
답변 시각 자동 기록
답변자 기록 (actorTag)

상태 관리:

미답변 → 답변 완료
비공개 → 공개

5.2.1.3 공지사항 관리 (EDITOR 이상)

생성:

제목, 내용 입력
공지 유형 선택 (G/S/E)
중요 공지사항 설정 (pinned_yn)
공개 여부 설정 (public_yn)
게시 기간 설정 (start_dt, end_dt)

수정/삭제:

모든 필드 수정 가능
삭제는 논리 삭제

IITP DABT Admin 프로젝트 아키텍처

53 / 91

5.2.2 사용자 관리 (ADMIN 이상)
목록 조회:

전체 사용자 조회 (페이징)
검색 (이메일, 이름)
상태 필터

사용자 생성:

관리자가 직접 사용자 계정 생성
이메일 중복 확인
임시 비밀번호 발급

사용자 수정:

이름, 소속 수정
상태 변경 (활성/비활성)

사용자 삭제:

논리 삭제 (del_yn='Y')
변경 이력 기록

Frontend UI:

 hasUserAccountEditPermission() 체크
ADMIN, S-ADMIN만 버튼 표시

Backend API:

 isAdmin() 체크

5.2.3 운영자 관리 (S-ADMIN 전용)
목록 조회:

전체 운영자 계정 조회
역할별 필터
상태별 필터

운영자 생성:

IITP DABT Admin 프로젝트 아키텍처

54 / 91

이메일, 비밀번호, 이름 입력
역할 선택 (S-ADMIN/ADMIN/EDITOR/VIEWER)
소속, 설명 입력

역할 변경:

운영자 역할 업데이트
변경 이력 기록 (sys_log_change_his)

삭제:

논리 삭제 (del_yn='Y')

Frontend UI:

 hasAccountManagementPermission() 체크
S-ADMIN만 메뉴 표시
다른 역할은 메뉴 자체가 안 보임

Backend API:

 isSAdmin() 체크 ✓
S-ADMIN 아니면 → 403 Forbidden

5.2.4 코드 관리 (S-ADMIN 전용)
그룹 관리:

코드 그룹 생성
그룹명 수정
그룹 삭제

코드 관리:

코드 생성 (grpId, codeId, codeNm)
코드 수정
정렬 순서 변경
코드 삭제

계층 구조:

IITP DABT Admin 프로젝트 아키텍처

55 / 91

부모-자식 관계 설정 (parentCodeId)
다단계 계층 지원 (codeLvl)

Frontend UI:

 hasAccountManagementPermission() 체크
S-ADMIN만 접근

Backend API:

 checkSuperRole() 체크 ✓
S-ADMIN 아니면 → 403 Forbidden

5.3 시스템 관리

5.3.1 로그 관리

5.3.1.1 접근 로그 (sys_log_user_access)

기록 내용:

로그인/로그아웃 이벤트
사용자 ID, 사용자 타입
성공/실패 여부
IP 주소, User Agent
에러 코드 및 메시지 (실패 시)

기록 시점:

로그인 시도 시 (성공/실패 모두)
로그아웃 시
토큰 만료 시

IITP DABT Admin 프로젝트 아키텍처

56 / 91

5.3.1.2 변경 로그 (sys_log_change_his)

기록 내용:

작업자 정보 (actor_type, actor_id)
액션 타입 (생성/수정/삭제)
대상 정보 (target_type, target_id)
변경 내용 요약 (chg_summary - JSONB)
성공/실패 여부

기록 대상:

FAQ, Q&A, 공지사항 생성/수정/삭제
사용자 계정 생성/수정/삭제
운영자 계정 변경
OpenAPI 키 발급/삭제

변경 내용 예시:

{

 "bf": { "question": "이전 질문", "answer": "이전 답변" },

 "af": { "question": "수정된 질문", "answer": "수정된 답변" }

}

5.3.2 모니터링
시스템 상태 확인:

 GET /api/common/health : 서버 상태
 GET /api/common/version : 버전 정보
Database 연결 상태

API 응답 시간:

accessLogMiddleware에서 자동 기록
Winston 로그에 응답 시간 포함

에러 추적:

모든 에러 Winston 로그에 기록

IITP DABT Admin 프로젝트 아키텍처

57 / 91

로그 레벨: error, warn, info, debug

IITP DABT Admin 프로젝트 아키텍처

58 / 91

6. 데이터베이스 개요

6.1 주요 테이블 목록

테이블명 설명 PK 주요 용도

 open_api_user 일반 사용자 계정 user_id 사용자 인증, 프로필

 open_api_auth_key OpenAPI 인증 키 key_id API 키 관리, 인증

 sys_adm_account 관리자 계정 adm_id 관리자 인증, 역할 관리

 sys_common_code 공통 코드 (grp_id, code_id) 시스템 설정, 코드 관리

 sys_faq FAQ faq_id FAQ 관리

 sys_qna Q&A qna_id Q&A 관리, 답변 처리

 sys_notice 공지사항 notice_id 공지사항 관리

 sys_log_user_access 사용자 접근 로그 log_id 로그인/로그아웃 이력

 sys_log_change_his 데이터 변경 로그 log_id 데이터 변경 이력 추적

IITP DABT Admin 프로젝트 아키텍처

59 / 91

6.2 주요 테이블 관계

open_api_user (사용자)

 │

 ├─→ (1:N) open_api_auth_key (API 키)

 │

 └─→ (1:N) sys_qna (Q&A)

sys_adm_account (관리자)

 (독립 테이블)

sys_common_code (공통 코드)

 │

 └─→ (self-referencing) parent_code_id (계층 구조)

sys_log_user_access (접근 로그)

 │

 └─→ user_id (사용자/관리자 ID 참조)

sys_log_change_his (변경 로그)

 │

 └─→ actor_id (작업자 ID 참조)

6.3 핵심 테이블 개요

6.3.1 open_api_user (일반 사용자)
주요 컬럼:

 user_id : PK, AUTO_INCREMENT
 login_id : 로그인 이메일 (UNIQUE)
 password : bcrypt 해시 (CHAR(60))

IITP DABT Admin 프로젝트 아키텍처

60 / 91

 user_name : 사용자 이름
 status : 계정 상태 ('A': 활성)
 del_yn : 삭제 여부
 affiliation : 소속
 latest_login_at : 최근 로그인 시각
 latest_key_created_at : 최근 키 발급 시각

6.3.2 sys_adm_account (관리자)
주요 컬럼:

 adm_id : PK, AUTO_INCREMENT
 login_id : 관리자 이메일 (UNIQUE)
 password : bcrypt 해시
 name : 관리자 이름
 roles : 역할 코드 ('S-ADMIN', 'ADMIN', 'EDITOR', 'VIEWER')
 status : 계정 상태
 del_yn : 삭제 여부
 affiliation : 소속

6.3.3 sys_common_code (공통 코드)
주요 컬럼:

 (grp_id, code_id) : 복합 PK
 grp_nm : 그룹 이름
 code_nm : 코드 이름
 code_type : 'B'(서비스용), 'A'(관리자용), 'S'(시스템용)
 parent_code_id : 부모 코드 (계층 구조)
 code_lvl : 계층 레벨
 sort_order : 정렬 순서
 use_yn : 사용 여부

주요 코드 그룹:

 sys_admin_roles : 관리자 역할 (S-ADMIN, ADMIN, EDITOR, VIEWER)
 faq_type : FAQ 유형

IITP DABT Admin 프로젝트 아키텍처

61 / 91

 qna_type : Q&A 유형
 notice_type : 공지사항 유형

6.3.4 sys_log_user_access (접근 로그)
주요 컬럼:

 log_id : PK, BIGINT
 user_id : 사용자/관리자 ID
 user_type : 'U' | 'A'
 log_type : 'LOGIN', 'LOGOUT', 'LOGOUT-T-EXP' (토큰 만료)
 act_result : 'S'(성공), 'F'(실패)
 err_code , err_msg : 실패 시
 ip_addr : IP 주소
 user_agent : 브라우저 정보
 access_tm : 접근 시각

6.3.5 sys_log_change_his (변경 로그)
주요 컬럼:

 log_id : PK, BIGINT
 actor_type : 'U' | 'A'
 actor_id : 작업자 ID
 action_type : 액션 종류
 target_type : 대상 타입 ('FAQ', 'QNA', 'NOTICE', 'USER' 등)
 target_id : 대상 ID
 act_result : 'S' | 'F'
 chg_summary : 변경 내용 (JSONB)
 act_tm : 작업 시각

IITP DABT Admin 프로젝트 아키텍처

62 / 91

7. 환경 및 배포

7.1 개발 환경

7.1.1 로컬 개발 환경 구성
사전 요구사항:

Node.js 22.x 이상
npm 9.x 이상
PostgreSQL 12.x 이상
Git

전체 설정 (권장):

프로젝트 클론

git clone <repository-url>

cd 05-IITP-DABT-Admin

전체 설정 (OS 자동 감지)

npm run setup

개발 서버 실행

npm run dev:be # Backend (Port 30000)

npm run dev:fe # Frontend (Port 5173)

7.1.2 환경 변수

7.1.2.1 Backend 환경 변수 (.env)

필수 항목:

IITP DABT Admin 프로젝트 아키텍처

63 / 91

서버

NODE_ENV=development

PORT=30000

데이터베이스

DB_HOST=localhost

DB_PORT=5432

DB_NAME=iitp_dabt_admin

DB_USER=your_username

DB_PASSWORD=your_password

JWT

JWT_SECRET=your-super-secret-jwt-key

JWT_ISSUER=iitp-dabt-api

ACCESS_TOKEN_EXPIRES_IN=15m

REFRESH_TOKEN_EXPIRES_IN=7d

암호화 (선택)

ENC_SECRET=your-encryption-secret

CORS (선택)

CORS_ORIGINS=http://localhost:5173

로깅

LOG_LEVEL=info

중요:

Backend는 실행 시 .env 파일 필수
빌드 시에는 불필요 (TypeScript 컴파일만)

7.1.2.2 Frontend 환경 변수 (.env)

선택 항목 (서브패스 배포 시만 필요):

IITP DABT Admin 프로젝트 아키텍처

64 / 91

시나리오 A: 독립 도메인 (기본)

→ 설정 불필요

시나리오 B: 서브패스 배포

VITE_BASE=/adm/

VITE_API_BASE_URL=/adm/api

주의 사항:

Frontend는 빌드 시점에만 환경 변수 사용
실행 시에는 정적 파일만 서빙 (환경 변수 미사용)

IITP DABT Admin 프로젝트 아키텍처

65 / 91

7.2 배포 구조

7.2.1 프로덕션 서버 구성

┌───┐

│ Production Server (Linux) │

│ │

│ ┌──┐ │

│ │ Nginx (Port 80/443) │ │

│ │ - Frontend 정적 파일 서빙 │ │

│ │ - Backend API 프록시 │ │

│ └────────┬──────────────┬────────────────┘ │

│ │ │ │

│ ↓ ↓ │

│ ┌────────────┐ ┌──────────────────┐ │

│ │ /var/www/ │ │ Backend (PM2) │ │

│ │ iitp-dabt/ │ │ Port 30000 │ │

│ │ fe/dist/ │ │ /var/www/.../be/ │ │

│ └────────────┘ └─────────┬────────── │

│ │ │

│ ┌────────┴────────┐ │

│ │ PostgreSQL │ │

│ │ Port 5432 │ │

│ └─────────────────┘ │

└───┘

7.2.2 배포 방식

7.2.2.1. 로컬 → 서버 배포 (개발/테스트용)

로컬에서 빌드 후 서버로 전송

npm run deploy # 전체

npm run deploy:be # Backend만

npm run deploy:fe # Frontend만

특징:

로컬에서 빌드

IITP DABT Admin 프로젝트 아키텍처

66 / 91

SCP로 서버 전송
빠른 배포

7.2.2.1.2. 서버 간 배포 (프로덕션 권장)

빌드 서버:

Git clone → 빌드 → 배포 디렉토리 준비

npm run build:server

실행 서버:

최초 1회: 운영 스크립트 배포

npm run deploy:server:ops

빌드 서버에서 파일 가져오기

npm run deploy:server

프로세스 시작/재시작

npm run start:server:be

npm run restart:server:fe

IITP DABT Admin 프로젝트 아키텍처

67 / 91

7.3 PM2 프로세스 관리

7.3.1 Backend 프로세스 관리

시작

pm2 start dist/index.js --name iitp-dabt-adm-be

재시작

pm2 restart iitp-dabt-adm-be

중지

pm2 stop iitp-dabt-adm-be

로그 확인

pm2 logs iitp-dabt-adm-be

상태 확인

pm2 status

재부팅 시 자동 시작

pm2 startup

pm2 save

IITP DABT Admin 프로젝트 아키텍처

68 / 91

7.4 Nginx 설정

7.4.1 독립 도메인 배포

upstream backend {

 server 127.0.0.1:30000;

}

server {

 listen 80;

 server_name admin.example.com;

 root /var/www/iitp-dabt-admin/fe/dist;

 index index.html;

 # Frontend (SPA fallback)

 location / {

 try_files $uri $uri/ /index.html;

 }

 # Backend API 프록시

 location /api/ {

 proxy_pass http://backend/api/;

 proxy_http_version 1.1;

 proxy_set_header Host $host;

 proxy_set_header X-Real-IP $remote_addr;

 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;

 client_max_body_size 20m;

 }

}

IITP DABT Admin 프로젝트 아키텍처

69 / 91

7.4.2 서브패스 배포

server {

 listen 80;

 server_name example.com;

 # API 프록시

 location /adm/api/ {

 proxy_pass http://backend/api/;

 # ... 프록시 설정

 }

 # 정적 자산

 location ^~ /adm/assets/ {

 alias /var/www/iitp-dabt-admin/fe/dist/assets/;

 try_files $uri =404;

 }

 # 루트 레벨 정적 파일 (이미지 등)

 # 주의: 정규식 location에서 alias 사용 시 try_files와 충돌 가능하므로 제거

 location ~* ^/adm/([^/]+\.(?:png|jpg|jpeg|gif|svg|ico|woff2?|js|css|map))$ {

 alias /var/www/iitp-dabt-admin/fe/dist/$1;

 expires 7d;

 add_header Cache-Control "public, max-age=604800";

 }

 # Frontend (alias 사용)

 location /adm/ {

 alias /var/www/iitp-dabt-admin/fe/dist/;

 index index.html;

 try_files $uri $uri/ /adm/index.html;

 }

}

주의:

Frontend 빌드 전 VITE_BASE=/adm/ 설정 필수
alias 사용 시 try_files의 fallback은 /adm/index.html

IITP DABT Admin 프로젝트 아키텍처

70 / 91

8. 보안

8.1 인증 및 인가

8.1.1 JWT 토큰 보안
Access Token:

만료 시간: 15분 (짧게 유지)
Payload: userId, userType, role
서명: HS256 (JWT_SECRET)

Refresh Token:

만료 시간: 7일
재발급 전용
httpOnly 쿠키 또는 LocalStorage

토큰 갱신:

Sliding Session (자동 갱신)
만료 2분 전 새 토큰 발급

8.1.2 역할 기반 접근 제어 (RBAC)
Frontend (UI 레벨):

권한 체크 함수로 메뉴/버튼 제어
접근 불가 페이지는 리다이렉트

Backend (API 레벨):

adminAuthMiddleware: userType 체크
세부 권한: Controller에서 role 체크

현재 구현:

IITP DABT Admin 프로젝트 아키텍처

71 / 91

운영자 관리/코드 관리: S-ADMIN 체크
사용자 관리: isAdmin() 체크 (모든 Admin)
FAQ/QNA/공지사항: adminAuthMiddleware만 (role 체크 없음)

8.2 데이터 보호

8.2.1 비밀번호 보안
해싱:

bcrypt 알고리즘
salt rounds: 10
결과: CHAR(60)

검증:

Common 패키지 isValidPassword() 사용
8자 이상, 영문/숫자/특수문자 필수

8.2.2 환경 변수 암호화
AES-256-CBC 암호화:

평문

DB_PASSWORD=mysecretpassword

암호화

DB_PASSWORD=ENC(aGVsbG93b3JsZA==...)

암호화 스크립트:

node be/scripts/encrypt-env.js

복호화 (자동):

IITP DABT Admin 프로젝트 아키텍처

72 / 91

import { getDecryptedEnv } from './utils/decrypt';

const dbPassword = getDecryptedEnv('DB_PASSWORD');

// ENC(...)로 시작하면 자동 복호화

8.2.3 CORS 설정
허용 Origin:
env 의 CORS_ORIGINS 설정에서 localhost 이외의 도메인 허용 세팅 가능합니다.

const corsOrigins = [

 'http://localhost:5173', // 기본 허용

 ...process.env.CORS_ORIGINS.split(',') // 추가 Origin

];

CORS 옵션:

credentials: true (쿠키 허용)
methods: GET, POST, PUT, DELETE
allowedHeaders: Content-Type, Authorization

8.3 로깅 및 감사

8.3.1 Winston 로깅 (3-File Strategy)
본 시스템은 3개의 로그 파일로 로그를 분리하여 관리합니다.

8.3.1.1. App Log (app-YYYY-MM-DD.log)

용도: 비즈니스 로직, 일반 정보, 경고 로그

경로: be/logs/app-YYYY-MM-DD.log

IITP DABT Admin 프로젝트 아키텍처

73 / 91

로그 레벨: info 이상 (info, warn, error)

기록 내용:

애플리케이션 시작/종료
비즈니스 로직 실행 정보
데이터베이스 연결 상태
주요 이벤트 (회원가입, 로그인 성공 등)
경고 및 에러

사용 예시:

import { appLogger } from './utils/logger';

appLogger.info('[userService.ts:register] 회원가입 성공: userId=123');

appLogger.warn('[authMiddleware.ts:25] 토큰 만료 2분 전');

appLogger.error('[userController.ts:50] 에러 발생', error);

로그 형식:

[2025-11-06 10:30:45] [INFO] 회원가입 성공: userId=123

[2025-11-06 10:31:20] [WARN] 토큰 만료 2분 전

[2025-11-06 10:32:10] [ERROR] DB 연결 실패: connection timeout

8.3.1.2. Access Log (access-YYYY-MM-DD.log)

용도: 모든 API 요청/응답 기록

경로: be/logs/access-YYYY-MM-DD.log

로그 레벨: info

기록 내용:

HTTP Method
요청 경로 (URL)
응답 상태 코드
응답 시간 (duration)
IP 주소

IITP DABT Admin 프로젝트 아키텍처

74 / 91

User Agent

자동 기록: accessLogMiddleware 에서 자동으로 모든 API 요청 기록

로그 형식:

[2025-11-06 10:30:45] : GET /api/user/profile 200 45ms

[2024-11-06 10:30:50] : POST /api/auth/login 200 123ms

[2024-11-06 10:31:00] : GET /api/admin/faqs 401 5ms

활용:

API 사용 패턴 분석
성능 모니터링 (느린 API 탐지)
트래픽 분석

8.3.1.3. Error Log (error-YYYY-MM-DD.log)

용도: 에러 로그만 별도 저장

경로: be/logs/error-YYYY-MM-DD.log

로그 레벨: error

기록 내용:

에러 메시지
스택 트레이스 (Stack Trace)
에러 발생 위치
에러 컨텍스트 정보

로그 형식:

[2025-11-06 10:32:10] [ERROR] DB 연결 실패: connection timeout

Error: connect ETIMEDOUT 192.168.1.100:5432

 at TCPConnectWrap.afterConnect [as oncomplete] (net.js:1144:16)

 at Protocol._enqueue (/app/node_modules/sequelize/lib/dialects/postgres/connection-manager.j

활용:

IITP DABT Admin 프로젝트 아키텍처

75 / 91

빠른 에러 추적
버그 분석
장애 대응

8.3.2 로그 공통 설정
로그 로테이션:

방식: 일별 자동 로테이션
보관 기간: 30일
압축: 미사용 (빠른 조회 우선)

로그 레벨 설정:

.env 파일

LOG_LEVEL=info # 개발: debug, 운영: warn

레벨 설명 기록 범위

 debug 디버그 모든 로그 (개발용)

 info 정보 info, warn, error (기본)

 warn 경고 warn, error (운영 권장)

 error 에러 error만

파일 위치:

be/

├── logs/

│ ├── app-2024-11-06.log # 비즈니스 로그

│ ├── access-2024-11-06.log # API 접근 로그

│ └── error-2024-11-06.log # 에러 전용 로그

8.3.3 로그 모니터링 명령어
실시간 로그 확인:

IITP DABT Admin 프로젝트 아키텍처

76 / 91

App 로그

tail -f be/logs/app-$(date +%Y-%m-%d).log

Access 로그

tail -f be/logs/access-$(date +%Y-%m-%d).log

Error 로그

tail -f be/logs/error-$(date +%Y-%m-%d).log

에러 검색:

오늘 에러 전체

cat be/logs/error-$(date +%Y-%m-%d).log

특정 에러 검색

grep -i "database" be/logs/error-*.log

최근 30일 에러 건수

wc -l be/logs/error-*.log

API 성능 분석:

느린 API 찾기 (100ms 이상)

grep -E "[0-9]{3,}ms" be/logs/access-$(date +%Y-%m-%d).log

에러 응답 찾기 (4xx, 5xx)

grep -E " [45][0-9]{2} " be/logs/access-$(date +%Y-%m-%d).log

8.3.4 감사 로그()
기록 대상:

모든 로그인/로그아웃
데이터 생성/수정/삭제
권한 변경
민감한 작업

보관:

IITP DABT Admin 프로젝트 아키텍처

77 / 91

데이터베이스에 영구 저장
삭제 불가 (감사 목적)

IITP DABT Admin 프로젝트 아키텍처

78 / 91

9. 로그 확인

9.1 로그 확인
실시간 로그:

tail -f be/logs/app-$(date +%Y-%m-%d).log

에러 로그 필터:

grep -i error be/logs/app-*.log

9.2 성능 모니터링
API 응답 시간:

accessLogMiddleware에서 자동 측정
로그에 duration 기록

데이터베이스:

Sequelize 쿼리 로깅
느린 쿼리 감지

IITP DABT Admin 프로젝트 아키텍처

79 / 91

부록

Appendix A: 용어집

용어 설명

Monorepo 여러 프로젝트를 하나의 저장소에서 관리하는 구조 (Common, BE, FE 통합)

Workspace npm의 Monorepo 관리 기능 (npm install --workspace)

Common Package BE/FE에서 공유하는 공통 라이브러리 (@iitp-dabt/common)

JWT JSON Web Token, 토큰 기반 인증 방식 (Access Token + Refresh Token)

Sliding Session 토큰 만료 2분 전 자동 갱신 방식 (사용자 경험 향상)

Refresh Token Access Token 재발급용 장기 토큰 (7일)

RBAC Role-Based Access Control, 역할 기반 접근 제어 (S-ADMIN~VIEWER)

actorTag 작업 수행자 식별자 (형식: U:123 또는 A:456)

bcrypt 비밀번호 해싱 알고리즘 (salt rounds: 10)

Paranoid Delete Sequelize의 논리 삭제 (soft delete), del_yn='Y' 로 표시

Sequelize Node.js ORM 라이브러리 (PostgreSQL 연동)

SPA Single Page Application, 단일 페이지 애플리케이션 (React)

3-Layer Architecture Controller → Service → Repository 아키텍처 패턴

API_URLS Common 패키지의 API URL 상수 집합 (BE/FE 공유)

AccessLog API 요청/응답을 자동으로 기록하는 로그 (access-*.log)

AppLog 비즈니스 로직 및 애플리케이션 이벤트 로그 (app-*.log)

ErrorLog 에러만 별도로 기록하는 로그 (error-*.log)

Winston Node.js 로깅 라이브러리 (본 프로젝트의 로깅 시스템)

PM2 Node.js 프로세스 관리 도구 (무중단 재시작, 모니터링)

IITP DABT Admin 프로젝트 아키텍처

80 / 91

용어 설명

Nginx 웹 서버 및 리버스 프록시 (Frontend 서빙, API 프록시)

CORS Cross-Origin Resource Sharing, 교차 출처 리소스 공유

Audit Log 감사 로그, 변경 이력 추적용 (sys_log_change_his)

IITP DABT Admin 프로젝트 아키텍처

81 / 91

Appendix B: 약어 풀이

약어 풀이

IITP Institute of Information & communications Technology Planning & Evaluation

DABT Data API Business Tool

Admin Administrator

API Application Programming Interface

BE Backend

FE Frontend

DB Database

ORM Object-Relational Mapping

CRUD Create, Read, Update, Delete

FAQ Frequently Asked Questions

QNA Question and Answer

PK Primary Key

FK Foreign Key

UK Unique Key

IITP DABT Admin 프로젝트 아키텍처

82 / 91

Appendix C: 권한 체크 함수

C.1. 권한 체크 함수 매트릭스

함수명 허용 역할
사용

위치
사용 예시

 isSAdmin(role) S-ADMIN BE/FE 운영자 관리, 코드 관리

 isAdmin(role)
ALL
Admin

BE
관리자 여부 확인 (현재 사용자
관리에 사용)

 hasAccountManagementPermission(role) S-ADMIN FE 운영자/코드 메뉴 표시 여부

 hasUserAccountEditPermission(role) ADMIN+ FE 사용자 생성/수정 버튼 표시

 hasContentEditPermission(role) EDITOR+ FE
FAQ/QNA 생성/수정 버튼
표시

C.2. Frontend 권한 체크 함수 (fe/src/utils/auth.ts)

C.2.1. 역할 확인 함수

// S-ADMIN 여부 확인

isSAdmin(adminRole: string | null): boolean

// 반환: adminRole === 'S-ADMIN'

// 사용: 운영자 관리, 코드 관리 메뉴 표시

// 일반 Admin 여부 확인 (모든 관리자)

isAdmin(adminRole: string | null): boolean

// 반환: ['S-ADMIN', 'ADMIN', 'EDITOR', 'VIEWER'] 중 하나

// 사용: 관리자 페이지 접근 제어

IITP DABT Admin 프로젝트 아키텍처

83 / 91

C.2.2. 기능별 권한 확인

// 콘텐츠 편집 권한 (EDITOR 이상)

hasContentEditPermission(adminRole: string | null): boolean

// 허용: S-ADMIN, ADMIN, EDITOR

// 거부: VIEWER

// 사용: FAQ, Q&A, 공지사항 생성/수정/삭제 버튼

// 사용자 계정 편집 권한 (ADMIN 이상)

hasUserAccountEditPermission(adminRole: string | null): boolean

// 허용: S-ADMIN, ADMIN

// 거부: EDITOR, VIEWER

// 사용: 사용자 계정 생성/수정/삭제 버튼

// 운영자 계정 관리 권한 (S-ADMIN만)

hasAccountManagementPermission(adminRole: string | null): boolean

// 허용: S-ADMIN

// 거부: ADMIN, EDITOR, VIEWER

// 사용: 운영자 관리, 공통 코드 관리 메뉴 표시

IITP DABT Admin 프로젝트 아키텍처

84 / 91

C.2.3. 사용 예시 (Frontend)

// 예시 1: FAQ 생성 버튼 표시 여부

const AdminFaqList = () => {

 const adminRole = getAdminRole();

 const canEdit = hasContentEditPermission(adminRole);

 return (

 <div>

 {canEdit && (

 <Button onClick={handleCreate}>FAQ 생성</Button>

)}

 </div>

);

};

// 예시 2: 운영자 관리 메뉴 표시 여부

const AdminSidebar = () => {

 const adminRole = getAdminRole();

 const canManageAccounts = hasAccountManagementPermission(adminRole);

 return (

 <nav>

 {canManageAccounts && (

 <MenuItem to="/admin/operators">운영자 관리</MenuItem>

)}

 </nav>

);

};

IITP DABT Admin 프로젝트 아키텍처

85 / 91

C.3. Backend 권한 체크 함수 (be/src/utils/auth.ts)

C.3.1. 역할 추출 및 확인

// Request에서 관리자 역할 추출

getAdminRole(req: Request): string | null

// 반환: req.user?.admRole || null

// 사용: Controller에서 권한 체크 전 역할 추출

// S-ADMIN 여부 확인

isSAdmin(adminRole: string | null): boolean

// 반환: adminRole === 'S-ADMIN'

// 사용: 운영자 계정 관리, 코드 관리 API

// 일반 Admin 여부 확인

isAdmin(adminRole: string | null): boolean

// 반환: ['S-ADMIN', 'ADMIN', 'EDITOR', 'VIEWER'] 중 하나

// 사용: 관리자 전용 API 접근 제어

IITP DABT Admin 프로젝트 아키텍처

86 / 91

C.3.2. 기능별 권한 확인

// 콘텐츠 편집 권한 (설계 의도: EDITOR 이상)

hasContentEditPermission(adminRole: string | null): boolean

// 허용: S-ADMIN, ADMIN, EDITOR

// 거부: VIEWER

// 사용: FAQ, Q&A, 공지사항 생성/수정/삭제 API (향후 추가 권장)

// 사용자 계정 편집 권한 (ADMIN 이상)

hasUserAccountEditPermission(adminRole: string | null): boolean

// 허용: S-ADMIN, ADMIN

// 거부: EDITOR, VIEWER

// 사용: 사용자 계정 관리 API (향후 추가 권장)

// 운영자 계정 관리 권한 (S-ADMIN만)

hasAccountManagementPermission(adminRole: string | null): boolean

// 허용: S-ADMIN

// 거부: ADMIN, EDITOR, VIEWER

// 사용: 운영자 계정 관리 API

// 슈퍼 관리자 체크 (통합 헬퍼)

checkSuperRole(req: Request): { adminId: number, isSuper: boolean } | null

// 반환: { adminId, isSuper: true/false } 또는 null

// 사용: 공통 코드 관리 Controller

IITP DABT Admin 프로젝트 아키텍처

87 / 91

C.3.3. 사용 예시 (Backend)

// 예시 1: 운영자 계정 생성 (S-ADMIN 전용)

export const createAdminAccount = async (req: Request, res: Response) => {

 const adminRole = getAdminRole(req);

 if (!isSAdmin(adminRole)) {

 return sendError(res, ErrorCode.FORBIDDEN, 'S-ADMIN 권한이 필요합니다.');

 }

 // 비즈니스 로직...

};

// 예시 2: FAQ 생성 (향후 개선 권장)

export const createFaqForAdmin = async (req: Request, res: Response) => {

 const adminRole = getAdminRole(req);

 // TODO: EDITOR 이상 권한 체크 추가 권장

 if (!hasContentEditPermission(adminRole)) {

 return sendError(res, ErrorCode.FORBIDDEN, 'EDITOR 이상 권한이 필요합니다.');

 }

 // 비즈니스 로직...

};

// 예시 3: 공통 코드 생성 (checkSuperRole 사용)

export const createCodeGroupByAdmin = async (req: Request, res: Response) => {

 const { adminId, isSuper } = checkSuperRole(req) || {};

 if (!isSuper) {

 return sendError(res, ErrorCode.FORBIDDEN);

 }

 // 비즈니스 로직...

};

IITP DABT Admin 프로젝트 아키텍처

88 / 91

Appendix D: 주요 환경 변수

D.1. Backend 환경 변수

D.1.1. 필수 환경 변수

변수명 설명 예시 비고

 NODE_ENV 실행 환경 production , development 운영/개발 모드 구분

 PORT 서버 포트 30000 Backend API 서버 포트

 DB_HOST DB 호스트 localhost , 192.168.1.100 PostgreSQL 서버 주소

 DB_PORT DB 포트 5432 PostgreSQL 기본 포트

 DB_NAME DB 이름 iitp_dabt_admin 데이터베이스 이름

 DB_USER DB 사용자 postgres DB 접속 사용자

 DB_PASSWORD DB 비밀번호 (보안) 암호화 가능 (ENC(...))

 JWT_SECRET JWT 비밀키 (강력한 랜덤 문자열) 최소 32자 이상 권장

D.1.2. 선택적 환경 변수

변수명 설명 기본값 예시

 JWT_ISSUER JWT 발행자 iitp-dabt-api 토큰 검증용

 ACCESS_TOKEN_EXPIRES_IN Access Token 만료 시간 15m 30m , 1h

 REFRESH_TOKEN_EXPIRES_IN
Refresh Token 만료
시간

 7d 14d , 30d

 ENC_SECRET 환경변수 암호화 키 - 민감 정보 암호화 시

 CORS_ORIGINS CORS 허용 Origin localhost https://domain.com

 LOG_LEVEL 로그 레벨 info
 debug , warn ,
 error

 DB_AUTO_SYNC Sequelize 자동 동기화 false true (개발만)

IITP DABT Admin 프로젝트 아키텍처

89 / 91

변수명 설명 기본값 예시

 DB_SYNC_ALTER Sequelize ALTER 실행 false true (위험!)

D.2. Frontend 환경 변수

D.2.1 필수 환경 변수

변수명 설명 예시 비고

 VITE_API_BASE_URL Backend API URL http://localhost:30000 개발 환경

 https://api.domain.com 운영 환경

D.2.2 선택적 환경 변수

변수명 설명 기본값 예시

 VITE_BASE Base URL (서브패스) / /adm/

 VITE_API_TIMEOUT API 타임아웃 (ms) 10000 30000

 VITE_APP_TITLE 앱 타이틀 IITP DABT Admin 커스텀 가능

 VITE_APP_VERSION 앱 버전 1.0.0 package.json 과 동기화

IITP DABT Admin 프로젝트 아키텍처

90 / 91

D.3. 환경 변수 파일 위치

프로젝트 루트/

├── be/

│ └── .env # Backend 환경 변수

├── fe/

│ └── .env # Frontend 환경 변수

└── packages/

 └── common/

 └── (환경 변수 없음)

D.4. 환경 변수 암호화 (Jasypt 스타일)

D.4.1 암호화 방법

암호화 스크립트 실행

cd be

node scripts/encrypt-env.js

입력 프롬프트

Enter encryption secret: your-enc-secret

Enter value to encrypt: mysecretpassword

출력

Encrypted: ENC(aGVsbG93b3JsZA==...)

D.4.2 사용 방법

1) .env 파일에 암호화된 값 설정:

DB_PASSWORD=ENC(aGVsbG93b3JsZA==...)

JWT_SECRET=ENC(bXlzZWNyZXRrZXk=...)

2) 코드에서 자동 복호화:

IITP DABT Admin 프로젝트 아키텍처

91 / 91

import { getDecryptedEnv } from './utils/decrypt';

const dbPassword = getDecryptedEnv('DB_PASSWORD');

// ENC(...)로 시작하면 자동 복호화

// 그렇지 않으면 원본 값 반환

3) 환경 변수에 암호화 키 설정:

export ENC_SECRET=your-enc-secret

또는 .env 파일에 추가

